src/HOL/Finite_Set.thy
changeset 44919 482f1807976e
parent 44890 22f665a2e91c
child 44928 7ef6505bde7f
--- a/src/HOL/Finite_Set.thy	Tue Sep 13 16:21:48 2011 +0200
+++ b/src/HOL/Finite_Set.thy	Tue Sep 13 16:22:01 2011 +0200
@@ -754,7 +754,7 @@
 proof -
   interpret comp_fun_idem inf by (fact comp_fun_idem_inf)
   from `finite A` show ?thesis by (induct A arbitrary: B)
-    (simp_all add: Inf_insert inf_commute fold_fun_comm)
+    (simp_all add: inf_commute fold_fun_comm)
 qed
 
 lemma sup_Sup_fold_sup:
@@ -763,7 +763,7 @@
 proof -
   interpret comp_fun_idem sup by (fact comp_fun_idem_sup)
   from `finite A` show ?thesis by (induct A arbitrary: B)
-    (simp_all add: Sup_insert sup_commute fold_fun_comm)
+    (simp_all add: sup_commute fold_fun_comm)
 qed
 
 lemma Inf_fold_inf:
@@ -784,7 +784,7 @@
   interpret comp_fun_idem "inf \<circ> f" by (fact comp_comp_fun_idem)
   from `finite A` show "?fold = ?inf"
     by (induct A arbitrary: B)
-      (simp_all add: INFI_def Inf_insert inf_left_commute)
+      (simp_all add: INFI_def inf_left_commute)
 qed
 
 lemma sup_SUPR_fold_sup:
@@ -795,7 +795,7 @@
   interpret comp_fun_idem "sup \<circ> f" by (fact comp_comp_fun_idem)
   from `finite A` show "?fold = ?sup"
     by (induct A arbitrary: B)
-      (simp_all add: SUPR_def Sup_insert sup_left_commute)
+      (simp_all add: SUPR_def sup_left_commute)
 qed
 
 lemma INFI_fold_inf: