--- a/doc-src/IsarAdvanced/Classes/Thy/code_examples/Classes.hs Tue Jul 24 15:20:53 2007 +0200
+++ b/doc-src/IsarAdvanced/Classes/Thy/code_examples/Classes.hs Tue Jul 24 15:21:54 2007 +0200
@@ -1,61 +1,59 @@
module Classes where {
-import qualified Integer;
-import qualified Nat;
+
+data Nat = Zero_nat | Suc Nat;
+
+data Bit = B0 | B1;
+
+nat_aux :: Integer -> Nat -> Nat;
+nat_aux i n = (if i <= 0 then n else nat_aux (i - 1) (Suc n));
+
+nat :: Integer -> Nat;
+nat i = nat_aux i Zero_nat;
class Semigroup a where {
mult :: a -> a -> a;
};
-class (Classes.Semigroup a) => Monoidl a where {
+class (Semigroup a) => Monoidl a where {
neutral :: a;
};
-class (Classes.Monoidl a) => Group a where {
+class (Monoidl a) => Group a where {
inverse :: a -> a;
};
-inverse_int :: Integer.Inta -> Integer.Inta;
-inverse_int i = Integer.uminus_int i;
+inverse_int :: Integer -> Integer;
+inverse_int i = negate i;
-neutral_int :: Integer.Inta;
-neutral_int = Integer.Number_of_int Integer.Pls;
+neutral_int :: Integer;
+neutral_int = 0;
-mult_int :: Integer.Inta -> Integer.Inta -> Integer.Inta;
-mult_int i j = Integer.plus_int i j;
+mult_int :: Integer -> Integer -> Integer;
+mult_int i j = i + j;
-instance Classes.Semigroup Integer.Inta where {
- mult = Classes.mult_int;
+instance Semigroup Integer where {
+ mult = mult_int;
};
-instance Classes.Monoidl Integer.Inta where {
- neutral = Classes.neutral_int;
-};
-
-instance Classes.Group Integer.Inta where {
- inverse = Classes.inverse_int;
+instance Monoidl Integer where {
+ neutral = neutral_int;
};
-pow_nat :: (Classes.Monoidl b) => Nat.Nat -> b -> b;
-pow_nat (Nat.Suc n) x = Classes.mult x (Classes.pow_nat n x);
-pow_nat Nat.Zero_nat x = Classes.neutral;
+instance Group Integer where {
+ inverse = inverse_int;
+};
-pow_int :: (Classes.Group a) => Integer.Inta -> a -> a;
-pow_int k x =
- (if Integer.less_eq_int (Integer.Number_of_int Integer.Pls) k
- then Classes.pow_nat (Integer.nat k) x
- else Classes.inverse
- (Classes.pow_nat (Integer.nat (Integer.uminus_int k)) x));
+pow_nat :: (Group b) => Nat -> b -> b;
+pow_nat (Suc n) x = mult x (pow_nat n x);
+pow_nat Zero_nat x = neutral;
-example :: Integer.Inta;
-example =
- Classes.pow_int
- (Integer.Number_of_int
- (Integer.Bit
- (Integer.Bit
- (Integer.Bit (Integer.Bit Integer.Pls Integer.B1) Integer.B0)
- Integer.B1)
- Integer.B0))
- (Integer.Number_of_int (Integer.Bit Integer.Min Integer.B0));
+pow_int :: (Group a) => Integer -> a -> a;
+pow_int k x =
+ (if 0 <= k then pow_nat (nat k) x
+ else inverse (pow_nat (nat (negate k)) x));
+
+example :: Integer;
+example = pow_int 10 (-2);
}