src/HOL/Word/Bits_Int.thy
changeset 67120 491fd7f0b5df
parent 65363 5eb619751b14
child 67408 4a4c14b24800
--- a/src/HOL/Word/Bits_Int.thy	Sun Dec 03 13:22:09 2017 +0100
+++ b/src/HOL/Word/Bits_Int.thy	Sun Dec 03 18:53:49 2017 +0100
@@ -32,11 +32,9 @@
 
 declare bitAND_int.simps [simp del]
 
-definition int_or_def:
-  "bitOR = (\<lambda>x y::int. NOT (NOT x AND NOT y))"
+definition int_or_def: "bitOR = (\<lambda>x y::int. NOT (NOT x AND NOT y))"
 
-definition int_xor_def:
-  "bitXOR = (\<lambda>x y::int. (x AND NOT y) OR (NOT x AND y))"
+definition int_xor_def: "bitXOR = (\<lambda>x y::int. (x AND NOT y) OR (NOT x AND y))"
 
 instance ..
 
@@ -44,9 +42,8 @@
 
 subsubsection \<open>Basic simplification rules\<close>
 
-lemma int_not_BIT [simp]:
-  "NOT (w BIT b) = (NOT w) BIT (\<not> b)"
-  unfolding int_not_def Bit_def by (cases b, simp_all)
+lemma int_not_BIT [simp]: "NOT (w BIT b) = (NOT w) BIT (\<not> b)"
+  by (cases b) (simp_all add: int_not_def Bit_def)
 
 lemma int_not_simps [simp]:
   "NOT (0::int) = -1"
@@ -57,160 +54,172 @@
   "NOT (- numeral (Num.Bit1 w)::int) = numeral (Num.Bit0 w)"
   unfolding int_not_def by simp_all
 
-lemma int_not_not [simp]: "NOT (NOT (x::int)) = x"
+lemma int_not_not [simp]: "NOT (NOT x) = x"
+  for x :: int
   unfolding int_not_def by simp
 
-lemma int_and_0 [simp]: "(0::int) AND x = 0"
+lemma int_and_0 [simp]: "0 AND x = 0"
+  for x :: int
   by (simp add: bitAND_int.simps)
 
-lemma int_and_m1 [simp]: "(-1::int) AND x = x"
+lemma int_and_m1 [simp]: "-1 AND x = x"
+  for x :: int
   by (simp add: bitAND_int.simps)
 
-lemma int_and_Bits [simp]:
-  "(x BIT b) AND (y BIT c) = (x AND y) BIT (b \<and> c)"
-  by (subst bitAND_int.simps, simp add: Bit_eq_0_iff Bit_eq_m1_iff)
+lemma int_and_Bits [simp]: "(x BIT b) AND (y BIT c) = (x AND y) BIT (b \<and> c)"
+  by (subst bitAND_int.simps) (simp add: Bit_eq_0_iff Bit_eq_m1_iff)
 
-lemma int_or_zero [simp]: "(0::int) OR x = x"
-  unfolding int_or_def by simp
+lemma int_or_zero [simp]: "0 OR x = x"
+  for x :: int
+  by (simp add: int_or_def)
 
-lemma int_or_minus1 [simp]: "(-1::int) OR x = -1"
-  unfolding int_or_def by simp
+lemma int_or_minus1 [simp]: "-1 OR x = -1"
+  for x :: int
+  by (simp add: int_or_def)
 
-lemma int_or_Bits [simp]:
-  "(x BIT b) OR (y BIT c) = (x OR y) BIT (b \<or> c)"
-  unfolding int_or_def by simp
+lemma int_or_Bits [simp]: "(x BIT b) OR (y BIT c) = (x OR y) BIT (b \<or> c)"
+  by (simp add: int_or_def)
 
-lemma int_xor_zero [simp]: "(0::int) XOR x = x"
-  unfolding int_xor_def by simp
+lemma int_xor_zero [simp]: "0 XOR x = x"
+  for x :: int
+  by (simp add: int_xor_def)
 
-lemma int_xor_Bits [simp]:
-  "(x BIT b) XOR (y BIT c) = (x XOR y) BIT ((b \<or> c) \<and> \<not> (b \<and> c))"
+lemma int_xor_Bits [simp]: "(x BIT b) XOR (y BIT c) = (x XOR y) BIT ((b \<or> c) \<and> \<not> (b \<and> c))"
   unfolding int_xor_def by auto
 
+
 subsubsection \<open>Binary destructors\<close>
 
 lemma bin_rest_NOT [simp]: "bin_rest (NOT x) = NOT (bin_rest x)"
-  by (cases x rule: bin_exhaust, simp)
+  by (cases x rule: bin_exhaust) simp
 
 lemma bin_last_NOT [simp]: "bin_last (NOT x) \<longleftrightarrow> \<not> bin_last x"
-  by (cases x rule: bin_exhaust, simp)
+  by (cases x rule: bin_exhaust) simp
 
 lemma bin_rest_AND [simp]: "bin_rest (x AND y) = bin_rest x AND bin_rest y"
-  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
+  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust) simp
 
 lemma bin_last_AND [simp]: "bin_last (x AND y) \<longleftrightarrow> bin_last x \<and> bin_last y"
-  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
+  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust) simp
 
 lemma bin_rest_OR [simp]: "bin_rest (x OR y) = bin_rest x OR bin_rest y"
-  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
+  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust) simp
 
 lemma bin_last_OR [simp]: "bin_last (x OR y) \<longleftrightarrow> bin_last x \<or> bin_last y"
-  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
+  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust) simp
 
 lemma bin_rest_XOR [simp]: "bin_rest (x XOR y) = bin_rest x XOR bin_rest y"
-  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
+  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust) simp
 
-lemma bin_last_XOR [simp]: "bin_last (x XOR y) \<longleftrightarrow> (bin_last x \<or> bin_last y) \<and> \<not> (bin_last x \<and> bin_last y)"
-  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
+lemma bin_last_XOR [simp]:
+  "bin_last (x XOR y) \<longleftrightarrow> (bin_last x \<or> bin_last y) \<and> \<not> (bin_last x \<and> bin_last y)"
+  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust) simp
 
 lemma bin_nth_ops:
-  "!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)"
-  "!!x y. bin_nth (x OR y) n = (bin_nth x n | bin_nth y n)"
-  "!!x y. bin_nth (x XOR y) n = (bin_nth x n ~= bin_nth y n)"
-  "!!x. bin_nth (NOT x) n = (~ bin_nth x n)"
+  "\<And>x y. bin_nth (x AND y) n \<longleftrightarrow> bin_nth x n \<and> bin_nth y n"
+  "\<And>x y. bin_nth (x OR y) n \<longleftrightarrow> bin_nth x n \<or> bin_nth y n"
+  "\<And>x y. bin_nth (x XOR y) n \<longleftrightarrow> bin_nth x n \<noteq> bin_nth y n"
+  "\<And>x. bin_nth (NOT x) n \<longleftrightarrow> \<not> bin_nth x n"
   by (induct n) auto
 
+
 subsubsection \<open>Derived properties\<close>
 
-lemma int_xor_minus1 [simp]: "(-1::int) XOR x = NOT x"
+lemma int_xor_minus1 [simp]: "-1 XOR x = NOT x"
+  for x :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
 lemma int_xor_extra_simps [simp]:
-  "w XOR (0::int) = w"
-  "w XOR (-1::int) = NOT w"
+  "w XOR 0 = w"
+  "w XOR -1 = NOT w"
+  for w :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
 lemma int_or_extra_simps [simp]:
-  "w OR (0::int) = w"
-  "w OR (-1::int) = -1"
+  "w OR 0 = w"
+  "w OR -1 = -1"
+  for w :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
 lemma int_and_extra_simps [simp]:
-  "w AND (0::int) = 0"
-  "w AND (-1::int) = w"
+  "w AND 0 = 0"
+  "w AND -1 = w"
+  for w :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
-(* commutativity of the above *)
+text \<open>Commutativity of the above.\<close>
 lemma bin_ops_comm:
-  shows
-  int_and_comm: "!!y::int. x AND y = y AND x" and
-  int_or_comm:  "!!y::int. x OR y = y OR x" and
-  int_xor_comm: "!!y::int. x XOR y = y XOR x"
+  fixes x y :: int
+  shows int_and_comm: "x AND y = y AND x"
+    and int_or_comm:  "x OR y = y OR x"
+    and int_xor_comm: "x XOR y = y XOR x"
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
 lemma bin_ops_same [simp]:
-  "(x::int) AND x = x"
-  "(x::int) OR x = x"
-  "(x::int) XOR x = 0"
+  "x AND x = x"
+  "x OR x = x"
+  "x XOR x = 0"
+  for x :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
 lemmas bin_log_esimps =
   int_and_extra_simps  int_or_extra_simps  int_xor_extra_simps
   int_and_0 int_and_m1 int_or_zero int_or_minus1 int_xor_zero int_xor_minus1
 
-(* basic properties of logical (bit-wise) operations *)
+
+subsubsection \<open>Basic properties of logical (bit-wise) operations\<close>
 
-lemma bbw_ao_absorb:
-  "!!y::int. x AND (y OR x) = x & x OR (y AND x) = x"
+lemma bbw_ao_absorb: "x AND (y OR x) = x \<and> x OR (y AND x) = x"
+  for x y :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
 lemma bbw_ao_absorbs_other:
-  "x AND (x OR y) = x \<and> (y AND x) OR x = (x::int)"
-  "(y OR x) AND x = x \<and> x OR (x AND y) = (x::int)"
-  "(x OR y) AND x = x \<and> (x AND y) OR x = (x::int)"
+  "x AND (x OR y) = x \<and> (y AND x) OR x = x"
+  "(y OR x) AND x = x \<and> x OR (x AND y) = x"
+  "(x OR y) AND x = x \<and> (x AND y) OR x = x"
+  for x y :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
 lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other
 
-lemma int_xor_not:
-  "!!y::int. (NOT x) XOR y = NOT (x XOR y) &
-        x XOR (NOT y) = NOT (x XOR y)"
+lemma int_xor_not: "(NOT x) XOR y = NOT (x XOR y) \<and> x XOR (NOT y) = NOT (x XOR y)"
+  for x y :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
-lemma int_and_assoc:
-  "(x AND y) AND (z::int) = x AND (y AND z)"
+lemma int_and_assoc: "(x AND y) AND z = x AND (y AND z)"
+  for x y z :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
-lemma int_or_assoc:
-  "(x OR y) OR (z::int) = x OR (y OR z)"
+lemma int_or_assoc: "(x OR y) OR z = x OR (y OR z)"
+  for x y z :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
-lemma int_xor_assoc:
-  "(x XOR y) XOR (z::int) = x XOR (y XOR z)"
+lemma int_xor_assoc: "(x XOR y) XOR z = x XOR (y XOR z)"
+  for x y z :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
 lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc
 
 (* BH: Why are these declared as simp rules??? *)
 lemma bbw_lcs [simp]:
-  "(y::int) AND (x AND z) = x AND (y AND z)"
-  "(y::int) OR (x OR z) = x OR (y OR z)"
-  "(y::int) XOR (x XOR z) = x XOR (y XOR z)"
+  "y AND (x AND z) = x AND (y AND z)"
+  "y OR (x OR z) = x OR (y OR z)"
+  "y XOR (x XOR z) = x XOR (y XOR z)"
+  for x y :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
 lemma bbw_not_dist:
-  "!!y::int. NOT (x OR y) = (NOT x) AND (NOT y)"
-  "!!y::int. NOT (x AND y) = (NOT x) OR (NOT y)"
+  "NOT (x OR y) = (NOT x) AND (NOT y)"
+  "NOT (x AND y) = (NOT x) OR (NOT y)"
+  for x y :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
-lemma bbw_oa_dist:
-  "!!y z::int. (x AND y) OR z =
-          (x OR z) AND (y OR z)"
+lemma bbw_oa_dist: "(x AND y) OR z = (x OR z) AND (y OR z)"
+  for x y z :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
-lemma bbw_ao_dist:
-  "!!y z::int. (x OR y) AND z =
-          (x AND z) OR (y AND z)"
+lemma bbw_ao_dist: "(x OR y) AND z = (x AND z) OR (y AND z)"
+  for x y z :: int
   by (auto simp add: bin_eq_iff bin_nth_ops)
 
 (*
@@ -218,10 +227,10 @@
 declare bin_ops_comm [simp] bbw_assocs [simp]
 *)
 
+
 subsubsection \<open>Simplification with numerals\<close>
 
-text \<open>Cases for \<open>0\<close> and \<open>-1\<close> are already covered by
-  other simp rules.\<close>
+text \<open>Cases for \<open>0\<close> and \<open>-1\<close> are already covered by other simp rules.\<close>
 
 lemma bin_rl_eqI: "\<lbrakk>bin_rest x = bin_rest y; bin_last x = bin_last y\<rbrakk> \<Longrightarrow> x = y"
   by (metis (mono_tags) BIT_eq_iff bin_ex_rl bin_last_BIT bin_rest_BIT)
@@ -234,8 +243,8 @@
   "bin_last (- numeral (Num.BitM w))"
   by (simp only: BIT_bin_simps [symmetric] bin_last_BIT)
 
-text \<open>FIXME: The rule sets below are very large (24 rules for each
-  operator). Is there a simpler way to do this?\<close>
+(* FIXME: The rule sets below are very large (24 rules for each
+  operator). Is there a simpler way to do this? *)
 
 lemma int_and_numerals [simp]:
   "numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False"
@@ -262,7 +271,7 @@
   "numeral (Num.Bit1 x) AND (1::int) = 1"
   "- numeral (Num.Bit0 x) AND (1::int) = 0"
   "- numeral (Num.Bit1 x) AND (1::int) = 1"
-  by (rule bin_rl_eqI, simp, simp)+
+  by (rule bin_rl_eqI; simp)+
 
 lemma int_or_numerals [simp]:
   "numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT False"
@@ -289,7 +298,7 @@
   "numeral (Num.Bit1 x) OR (1::int) = numeral (Num.Bit1 x)"
   "- numeral (Num.Bit0 x) OR (1::int) = - numeral (Num.BitM x)"
   "- numeral (Num.Bit1 x) OR (1::int) = - numeral (Num.Bit1 x)"
-  by (rule bin_rl_eqI, simp, simp)+
+  by (rule bin_rl_eqI; simp)+
 
 lemma int_xor_numerals [simp]:
   "numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT False"
@@ -316,12 +325,12 @@
   "numeral (Num.Bit1 x) XOR (1::int) = numeral (Num.Bit0 x)"
   "- numeral (Num.Bit0 x) XOR (1::int) = - numeral (Num.BitM x)"
   "- numeral (Num.Bit1 x) XOR (1::int) = - numeral (Num.Bit0 (x + Num.One))"
-  by (rule bin_rl_eqI, simp, simp)+
+  by (rule bin_rl_eqI; simp)+
+
 
 subsubsection \<open>Interactions with arithmetic\<close>
 
-lemma plus_and_or [rule_format]:
-  "ALL y::int. (x AND y) + (x OR y) = x + y"
+lemma plus_and_or [rule_format]: "\<forall>y::int. (x AND y) + (x OR y) = x + y"
   apply (induct x rule: bin_induct)
     apply clarsimp
    apply clarsimp
@@ -334,8 +343,8 @@
   apply simp
   done
 
-lemma le_int_or:
-  "bin_sign (y::int) = 0 ==> x <= x OR y"
+lemma le_int_or: "bin_sign y = 0 \<Longrightarrow> x \<le> x OR y"
+  for x y :: int
   apply (induct y arbitrary: x rule: bin_induct)
     apply clarsimp
    apply clarsimp
@@ -348,8 +357,7 @@
 lemmas int_and_le =
   xtrans(3) [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or]
 
-(* interaction between bit-wise and arithmetic *)
-(* good example of bin_induction *)
+text \<open>Interaction between bit-wise and arithmetic: good example of \<open>bin_induction\<close>.\<close>
 lemma bin_add_not: "x + NOT x = (-1::int)"
   apply (induct x rule: bin_induct)
     apply clarsimp
@@ -357,91 +365,77 @@
   apply (case_tac bit, auto)
   done
 
+
 subsubsection \<open>Truncating results of bit-wise operations\<close>
 
 lemma bin_trunc_ao:
-  "!!x y. (bintrunc n x) AND (bintrunc n y) = bintrunc n (x AND y)"
-  "!!x y. (bintrunc n x) OR (bintrunc n y) = bintrunc n (x OR y)"
+  "bintrunc n x AND bintrunc n y = bintrunc n (x AND y)"
+  "bintrunc n x OR bintrunc n y = bintrunc n (x OR y)"
   by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr)
 
-lemma bin_trunc_xor:
-  "!!x y. bintrunc n (bintrunc n x XOR bintrunc n y) =
-          bintrunc n (x XOR y)"
+lemma bin_trunc_xor: "bintrunc n (bintrunc n x XOR bintrunc n y) = bintrunc n (x XOR y)"
   by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr)
 
-lemma bin_trunc_not:
-  "!!x. bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)"
+lemma bin_trunc_not: "bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)"
   by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr)
 
-(* want theorems of the form of bin_trunc_xor *)
-lemma bintr_bintr_i:
-  "x = bintrunc n y ==> bintrunc n x = bintrunc n y"
+text \<open>Want theorems of the form of \<open>bin_trunc_xor\<close>.\<close>
+lemma bintr_bintr_i: "x = bintrunc n y \<Longrightarrow> bintrunc n x = bintrunc n y"
   by auto
 
 lemmas bin_trunc_and = bin_trunc_ao(1) [THEN bintr_bintr_i]
 lemmas bin_trunc_or = bin_trunc_ao(2) [THEN bintr_bintr_i]
 
+
 subsection \<open>Setting and clearing bits\<close>
 
-(** nth bit, set/clear **)
+text \<open>nth bit, set/clear\<close>
 
-primrec
-  bin_sc :: "nat => bool => int => int"
-where
-  Z: "bin_sc 0 b w = bin_rest w BIT b"
+primrec bin_sc :: "nat \<Rightarrow> bool \<Rightarrow> int \<Rightarrow> int"
+  where
+    Z: "bin_sc 0 b w = bin_rest w BIT b"
   | Suc: "bin_sc (Suc n) b w = bin_sc n b (bin_rest w) BIT bin_last w"
 
-lemma bin_nth_sc [simp]:
-  "bin_nth (bin_sc n b w) n \<longleftrightarrow> b"
+lemma bin_nth_sc [simp]: "bin_nth (bin_sc n b w) n \<longleftrightarrow> b"
   by (induct n arbitrary: w) auto
 
-lemma bin_sc_sc_same [simp]:
-  "bin_sc n c (bin_sc n b w) = bin_sc n c w"
+lemma bin_sc_sc_same [simp]: "bin_sc n c (bin_sc n b w) = bin_sc n c w"
   by (induct n arbitrary: w) auto
 
-lemma bin_sc_sc_diff:
-  "m ~= n ==>
-    bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)"
+lemma bin_sc_sc_diff: "m \<noteq> n \<Longrightarrow> bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)"
   apply (induct n arbitrary: w m)
    apply (case_tac [!] m)
      apply auto
   done
 
-lemma bin_nth_sc_gen:
-  "bin_nth (bin_sc n b w) m = (if m = n then b else bin_nth w m)"
+lemma bin_nth_sc_gen: "bin_nth (bin_sc n b w) m = (if m = n then b else bin_nth w m)"
   by (induct n arbitrary: w m) (case_tac [!] m, auto)
 
-lemma bin_sc_nth [simp]:
-  "(bin_sc n (bin_nth w n) w) = w"
+lemma bin_sc_nth [simp]: "bin_sc n (bin_nth w n) w = w"
   by (induct n arbitrary: w) auto
 
-lemma bin_sign_sc [simp]:
-  "bin_sign (bin_sc n b w) = bin_sign w"
+lemma bin_sign_sc [simp]: "bin_sign (bin_sc n b w) = bin_sign w"
   by (induct n arbitrary: w) auto
 
-lemma bin_sc_bintr [simp]:
-  "bintrunc m (bin_sc n x (bintrunc m (w))) = bintrunc m (bin_sc n x w)"
+lemma bin_sc_bintr [simp]: "bintrunc m (bin_sc n x (bintrunc m (w))) = bintrunc m (bin_sc n x w)"
   apply (induct n arbitrary: w m)
    apply (case_tac [!] w rule: bin_exhaust)
    apply (case_tac [!] m, auto)
   done
 
-lemma bin_clr_le:
-  "bin_sc n False w <= w"
+lemma bin_clr_le: "bin_sc n False w \<le> w"
   apply (induct n arbitrary: w)
    apply (case_tac [!] w rule: bin_exhaust)
    apply (auto simp: le_Bits)
   done
 
-lemma bin_set_ge:
-  "bin_sc n True w >= w"
+lemma bin_set_ge: "bin_sc n True w \<ge> w"
   apply (induct n arbitrary: w)
    apply (case_tac [!] w rule: bin_exhaust)
    apply (auto simp: le_Bits)
   done
 
-lemma bintr_bin_clr_le:
-  "bintrunc n (bin_sc m False w) <= bintrunc n w"
+lemma bintr_bin_clr_le: "bintrunc n (bin_sc m False w) \<le> bintrunc n w"
   apply (induct n arbitrary: w m)
    apply simp
   apply (case_tac w rule: bin_exhaust)
@@ -449,8 +443,7 @@
    apply (auto simp: le_Bits)
   done
 
-lemma bintr_bin_set_ge:
-  "bintrunc n (bin_sc m True w) >= bintrunc n w"
+lemma bintr_bin_set_ge: "bintrunc n (bin_sc m True w) \<ge> bintrunc n w"
   apply (induct n arbitrary: w m)
    apply simp
   apply (case_tac w rule: bin_exhaust)
@@ -466,8 +459,7 @@
 
 lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP
 
-lemma bin_sc_minus:
-  "0 < n ==> bin_sc (Suc (n - 1)) b w = bin_sc n b w"
+lemma bin_sc_minus: "0 < n \<Longrightarrow> bin_sc (Suc (n - 1)) b w = bin_sc n b w"
   by auto
 
 lemmas bin_sc_Suc_minus =
@@ -482,40 +474,35 @@
 subsection \<open>Splitting and concatenation\<close>
 
 definition bin_rcat :: "nat \<Rightarrow> int list \<Rightarrow> int"
-where
-  "bin_rcat n = foldl (\<lambda>u v. bin_cat u n v) 0"
+  where "bin_rcat n = foldl (\<lambda>u v. bin_cat u n v) 0"
 
 fun bin_rsplit_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list"
-where
-  "bin_rsplit_aux n m c bs =
-    (if m = 0 | n = 0 then bs else
+  where "bin_rsplit_aux n m c bs =
+    (if m = 0 \<or> n = 0 then bs
+     else
       let (a, b) = bin_split n c
       in bin_rsplit_aux n (m - n) a (b # bs))"
 
 definition bin_rsplit :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list"
-where
-  "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []"
+  where "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []"
 
 fun bin_rsplitl_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list"
-where
-  "bin_rsplitl_aux n m c bs =
-    (if m = 0 | n = 0 then bs else
+  where "bin_rsplitl_aux n m c bs =
+    (if m = 0 \<or> n = 0 then bs
+     else
       let (a, b) = bin_split (min m n) c
       in bin_rsplitl_aux n (m - n) a (b # bs))"
 
 definition bin_rsplitl :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list"
-where
-  "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []"
+  where "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []"
 
 declare bin_rsplit_aux.simps [simp del]
 declare bin_rsplitl_aux.simps [simp del]
 
-lemma bin_sign_cat:
-  "bin_sign (bin_cat x n y) = bin_sign x"
+lemma bin_sign_cat: "bin_sign (bin_cat x n y) = bin_sign x"
   by (induct n arbitrary: y) auto
 
-lemma bin_cat_Suc_Bit:
-  "bin_cat w (Suc n) (v BIT b) = bin_cat w n v BIT b"
+lemma bin_cat_Suc_Bit: "bin_cat w (Suc n) (v BIT b) = bin_cat w n v BIT b"
   by auto
 
 lemma bin_nth_cat:
@@ -527,9 +514,9 @@
   done
 
 lemma bin_nth_split:
-  "bin_split n c = (a, b) ==>
-    (ALL k. bin_nth a k = bin_nth c (n + k)) &
-    (ALL k. bin_nth b k = (k < n & bin_nth c k))"
+  "bin_split n c = (a, b) \<Longrightarrow>
+    (\<forall>k. bin_nth a k = bin_nth c (n + k)) \<and>
+    (\<forall>k. bin_nth b k = (k < n \<and> bin_nth c k))"
   apply (induct n arbitrary: b c)
    apply clarsimp
   apply (clarsimp simp: Let_def split: prod.split_asm)
@@ -537,45 +524,38 @@
   apply auto
   done
 
-lemma bin_cat_assoc:
-  "bin_cat (bin_cat x m y) n z = bin_cat x (m + n) (bin_cat y n z)"
+lemma bin_cat_assoc: "bin_cat (bin_cat x m y) n z = bin_cat x (m + n) (bin_cat y n z)"
   by (induct n arbitrary: z) auto
 
-lemma bin_cat_assoc_sym:
-  "bin_cat x m (bin_cat y n z) = bin_cat (bin_cat x (m - n) y) (min m n) z"
-  apply (induct n arbitrary: z m, clarsimp)
+lemma bin_cat_assoc_sym: "bin_cat x m (bin_cat y n z) = bin_cat (bin_cat x (m - n) y) (min m n) z"
+  apply (induct n arbitrary: z m)
+   apply clarsimp
   apply (case_tac m, auto)
   done
 
 lemma bin_cat_zero [simp]: "bin_cat 0 n w = bintrunc n w"
   by (induct n arbitrary: w) auto
 
-lemma bintr_cat1:
-  "bintrunc (k + n) (bin_cat a n b) = bin_cat (bintrunc k a) n b"
+lemma bintr_cat1: "bintrunc (k + n) (bin_cat a n b) = bin_cat (bintrunc k a) n b"
   by (induct n arbitrary: b) auto
 
 lemma bintr_cat: "bintrunc m (bin_cat a n b) =
     bin_cat (bintrunc (m - n) a) n (bintrunc (min m n) b)"
   by (rule bin_eqI) (auto simp: bin_nth_cat nth_bintr)
 
-lemma bintr_cat_same [simp]:
-  "bintrunc n (bin_cat a n b) = bintrunc n b"
+lemma bintr_cat_same [simp]: "bintrunc n (bin_cat a n b) = bintrunc n b"
   by (auto simp add : bintr_cat)
 
-lemma cat_bintr [simp]:
-  "bin_cat a n (bintrunc n b) = bin_cat a n b"
+lemma cat_bintr [simp]: "bin_cat a n (bintrunc n b) = bin_cat a n b"
   by (induct n arbitrary: b) auto
 
-lemma split_bintrunc:
-  "bin_split n c = (a, b) ==> b = bintrunc n c"
+lemma split_bintrunc: "bin_split n c = (a, b) \<Longrightarrow> b = bintrunc n c"
   by (induct n arbitrary: b c) (auto simp: Let_def split: prod.split_asm)
 
-lemma bin_cat_split:
-  "bin_split n w = (u, v) ==> w = bin_cat u n v"
+lemma bin_cat_split: "bin_split n w = (u, v) \<Longrightarrow> w = bin_cat u n v"
   by (induct n arbitrary: v w) (auto simp: Let_def split: prod.split_asm)
 
-lemma bin_split_cat:
-  "bin_split n (bin_cat v n w) = (v, bintrunc n w)"
+lemma bin_split_cat: "bin_split n (bin_cat v n w) = (v, bintrunc n w)"
   by (induct n arbitrary: w) auto
 
 lemma bin_split_zero [simp]: "bin_split n 0 = (0, 0)"
@@ -586,7 +566,7 @@
   by (induct n) auto
 
 lemma bin_split_trunc:
-  "bin_split (min m n) c = (a, b) ==>
+  "bin_split (min m n) c = (a, b) \<Longrightarrow>
     bin_split n (bintrunc m c) = (bintrunc (m - n) a, b)"
   apply (induct n arbitrary: m b c, clarsimp)
   apply (simp add: bin_rest_trunc Let_def split: prod.split_asm)
@@ -595,7 +575,7 @@
   done
 
 lemma bin_split_trunc1:
-  "bin_split n c = (a, b) ==>
+  "bin_split n c = (a, b) \<Longrightarrow>
     bin_split n (bintrunc m c) = (bintrunc (m - n) a, bintrunc m b)"
   apply (induct n arbitrary: m b c, clarsimp)
   apply (simp add: bin_rest_trunc Let_def split: prod.split_asm)
@@ -603,25 +583,25 @@
    apply (auto simp: Let_def split: prod.split_asm)
   done
 
-lemma bin_cat_num:
-  "bin_cat a n b = a * 2 ^ n + bintrunc n b"
-  apply (induct n arbitrary: b, clarsimp)
+lemma bin_cat_num: "bin_cat a n b = a * 2 ^ n + bintrunc n b"
+  apply (induct n arbitrary: b)
+   apply clarsimp
   apply (simp add: Bit_def)
   done
 
-lemma bin_split_num:
-  "bin_split n b = (b div 2 ^ n, b mod 2 ^ n)"
-  apply (induct n arbitrary: b, simp)
+lemma bin_split_num: "bin_split n b = (b div 2 ^ n, b mod 2 ^ n)"
+  apply (induct n arbitrary: b)
+   apply simp
   apply (simp add: bin_rest_def zdiv_zmult2_eq)
   apply (case_tac b rule: bin_exhaust)
   apply simp
   apply (simp add: Bit_def mod_mult_mult1 p1mod22k)
   done
 
+
 subsection \<open>Miscellaneous lemmas\<close>
 
-lemma nth_2p_bin:
-  "bin_nth (2 ^ n) m = (m = n)"
+lemma nth_2p_bin: "bin_nth (2 ^ n) m = (m = n)"
   apply (induct n arbitrary: m)
    apply clarsimp
    apply safe
@@ -629,18 +609,14 @@
     apply (auto simp: Bit_B0_2t [symmetric])
   done
 
-(* for use when simplifying with bin_nth_Bit *)
-
-lemma ex_eq_or:
-  "(EX m. n = Suc m & (m = k | P m)) = (n = Suc k | (EX m. n = Suc m & P m))"
+(*for use when simplifying with bin_nth_Bit*)
+lemma ex_eq_or: "(\<exists>m. n = Suc m \<and> (m = k \<or> P m)) \<longleftrightarrow> n = Suc k \<or> (\<exists>m. n = Suc m \<and> P m)"
   by auto
 
 lemma power_BIT: "2 ^ (Suc n) - 1 = (2 ^ n - 1) BIT True"
-  unfolding Bit_B1
-  by (induct n) simp_all
+  by (induct n) (simp_all add: Bit_B1)
 
-lemma mod_BIT:
-  "bin BIT bit mod 2 ^ Suc n = (bin mod 2 ^ n) BIT bit"
+lemma mod_BIT: "bin BIT bit mod 2 ^ Suc n = (bin mod 2 ^ n) BIT bit"
 proof -
   have "2 * (bin mod 2 ^ n) + 1 = (2 * bin mod 2 ^ Suc n) + 1"
     by (simp add: mod_mult_mult1)
@@ -652,9 +628,8 @@
     by (auto simp add: Bit_def)
 qed
 
-lemma AND_mod:
-  fixes x :: int
-  shows "x AND 2 ^ n - 1 = x mod 2 ^ n"
+lemma AND_mod: "x AND 2 ^ n - 1 = x mod 2 ^ n"
+  for x :: int
 proof (induct x arbitrary: n rule: bin_induct)
   case 1
   then show ?case