--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Hull.thy Wed May 02 13:49:38 2018 +0200
@@ -0,0 +1,85 @@
+(* Title: Hull.thy
+ Author: Amine Chaieb, University of Cambridge
+ Author: Jose Divasón <jose.divasonm at unirioja.es>
+ Author: Jesús Aransay <jesus-maria.aransay at unirioja.es>
+ Author: Johannes Hölzl, VU Amsterdam
+*)
+
+theory Hull
+ imports Main
+begin
+
+subsection \<open>A generic notion of the convex, affine, conic hull, or closed "hull".\<close>
+
+definition hull :: "('a set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "hull" 75)
+ where "S hull s = \<Inter>{t. S t \<and> s \<subseteq> t}"
+
+lemma hull_same: "S s \<Longrightarrow> S hull s = s"
+ unfolding hull_def by auto
+
+lemma hull_in: "(\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)) \<Longrightarrow> S (S hull s)"
+ unfolding hull_def Ball_def by auto
+
+lemma hull_eq: "(\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)) \<Longrightarrow> (S hull s) = s \<longleftrightarrow> S s"
+ using hull_same[of S s] hull_in[of S s] by metis
+
+lemma hull_hull [simp]: "S hull (S hull s) = S hull s"
+ unfolding hull_def by blast
+
+lemma hull_subset[intro]: "s \<subseteq> (S hull s)"
+ unfolding hull_def by blast
+
+lemma hull_mono: "s \<subseteq> t \<Longrightarrow> (S hull s) \<subseteq> (S hull t)"
+ unfolding hull_def by blast
+
+lemma hull_antimono: "\<forall>x. S x \<longrightarrow> T x \<Longrightarrow> (T hull s) \<subseteq> (S hull s)"
+ unfolding hull_def by blast
+
+lemma hull_minimal: "s \<subseteq> t \<Longrightarrow> S t \<Longrightarrow> (S hull s) \<subseteq> t"
+ unfolding hull_def by blast
+
+lemma subset_hull: "S t \<Longrightarrow> S hull s \<subseteq> t \<longleftrightarrow> s \<subseteq> t"
+ unfolding hull_def by blast
+
+lemma hull_UNIV [simp]: "S hull UNIV = UNIV"
+ unfolding hull_def by auto
+
+lemma hull_unique: "s \<subseteq> t \<Longrightarrow> S t \<Longrightarrow> (\<And>t'. s \<subseteq> t' \<Longrightarrow> S t' \<Longrightarrow> t \<subseteq> t') \<Longrightarrow> (S hull s = t)"
+ unfolding hull_def by auto
+
+lemma hull_induct: "(\<And>x. x\<in> S \<Longrightarrow> P x) \<Longrightarrow> Q {x. P x} \<Longrightarrow> \<forall>x\<in> Q hull S. P x"
+ using hull_minimal[of S "{x. P x}" Q]
+ by (auto simp add: subset_eq)
+
+lemma hull_inc: "x \<in> S \<Longrightarrow> x \<in> P hull S"
+ by (metis hull_subset subset_eq)
+
+lemma hull_Un_subset: "(S hull s) \<union> (S hull t) \<subseteq> (S hull (s \<union> t))"
+ unfolding Un_subset_iff by (metis hull_mono Un_upper1 Un_upper2)
+
+lemma hull_Un:
+ assumes T: "\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)"
+ shows "S hull (s \<union> t) = S hull (S hull s \<union> S hull t)"
+ apply (rule equalityI)
+ apply (meson hull_mono hull_subset sup.mono)
+ by (metis hull_Un_subset hull_hull hull_mono)
+
+lemma hull_Un_left: "P hull (S \<union> T) = P hull (P hull S \<union> T)"
+ apply (rule equalityI)
+ apply (simp add: Un_commute hull_mono hull_subset sup.coboundedI2)
+ by (metis Un_subset_iff hull_hull hull_mono hull_subset)
+
+lemma hull_Un_right: "P hull (S \<union> T) = P hull (S \<union> P hull T)"
+ by (metis hull_Un_left sup.commute)
+
+lemma hull_insert:
+ "P hull (insert a S) = P hull (insert a (P hull S))"
+ by (metis hull_Un_right insert_is_Un)
+
+lemma hull_redundant_eq: "a \<in> (S hull s) \<longleftrightarrow> S hull (insert a s) = S hull s"
+ unfolding hull_def by blast
+
+lemma hull_redundant: "a \<in> (S hull s) \<Longrightarrow> S hull (insert a s) = S hull s"
+ by (metis hull_redundant_eq)
+
+end
\ No newline at end of file