src/HOL/Vector_Spaces.thy
changeset 68072 493b818e8e10
child 68073 fad29d2a17a5
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Vector_Spaces.thy	Wed May 02 13:49:38 2018 +0200
@@ -0,0 +1,1759 @@
+(* Title:   Vector_Spaces.thy
+   Author:  Amine Chaieb, University of Cambridge
+   Author:  Jose Divasón <jose.divasonm at unirioja.es>
+   Author:  Jesús Aransay <jesus-maria.aransay at unirioja.es>
+   Author:  Johannes Hölzl, VU Amsterdam
+   Author: Fabian Immler, TUM
+*)
+
+section \<open>Vector Spaces\<close>
+
+theory Vector_Spaces
+  imports Modules FuncSet
+begin
+
+lemma isomorphism_expand:
+  "f \<circ> g = id \<and> g \<circ> f = id \<longleftrightarrow> (\<forall>x. f (g x) = x) \<and> (\<forall>x. g (f x) = x)"
+  by (simp add: fun_eq_iff o_def id_def)
+
+lemma left_right_inverse_eq:
+  assumes fg: "f \<circ> g = id"
+    and gh: "g \<circ> h = id"
+  shows "f = h"
+proof -
+  have "f = f \<circ> (g \<circ> h)"
+    unfolding gh by simp
+  also have "\<dots> = (f \<circ> g) \<circ> h"
+    by (simp add: o_assoc)
+  finally show "f = h"
+    unfolding fg by simp
+qed
+
+lemma ordLeq3_finite_infinite:
+  assumes A: "finite A" and B: "infinite B" shows "ordLeq3 (card_of A) (card_of B)"
+proof -
+  have \<open>ordLeq3 (card_of A) (card_of B) \<or> ordLeq3 (card_of B) (card_of A)\<close>
+    by (intro ordLeq_total card_of_Well_order)
+  moreover have "\<not> ordLeq3 (card_of B) (card_of A)"
+    using B A card_of_ordLeq_finite[of B A] by auto
+  ultimately show ?thesis by auto
+qed
+
+locale vector_space =
+  fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b" (infixr "*s" 75)
+  assumes vector_space_assms:\<comment>\<open>re-stating the assumptions of \<open>module\<close> instead of extending \<open>module\<close>
+   allows us to rewrite in the sublocale.\<close>
+    "a *s (x + y) = a *s x + a *s y"
+    "(a + b) *s x = a *s x + b *s x"
+    "a *s (b *s x) = (a * b) *s x"
+    "1 *s x = x"
+
+lemma module_iff_vector_space: "module s \<longleftrightarrow> vector_space s"
+  unfolding module_def vector_space_def ..
+
+locale linear = vs1: vector_space s1 + vs2: vector_space s2 + module_hom s1 s2 f
+  for s1 :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b" (infixr "*a" 75)
+  and s2 :: "'a::field \<Rightarrow> 'c::ab_group_add \<Rightarrow> 'c" (infixr "*b" 75)
+  and f :: "'b \<Rightarrow> 'c"
+
+lemma module_hom_iff_linear: "module_hom s1 s2 f \<longleftrightarrow> linear s1 s2 f"
+  unfolding module_hom_def linear_def module_iff_vector_space by auto
+lemmas module_hom_eq_linear = module_hom_iff_linear[abs_def, THEN meta_eq_to_obj_eq]
+lemmas linear_iff_module_hom = module_hom_iff_linear[symmetric]
+lemmas linear_module_homI = module_hom_iff_linear[THEN iffD1]
+  and module_hom_linearI = module_hom_iff_linear[THEN iffD2]
+
+context vector_space begin
+
+sublocale module scale rewrites "module_hom = linear"
+  by (unfold_locales) (fact vector_space_assms module_hom_eq_linear)+
+
+lemmas\<comment>\<open>from \<open>module\<close>\<close>
+      linear_id = module_hom_id
+  and linear_ident = module_hom_ident
+  and linear_scale_self = module_hom_scale_self
+  and linear_scale_left = module_hom_scale_left
+  and linear_uminus = module_hom_uminus
+
+lemma linear_imp_scale:
+  fixes D::"'a \<Rightarrow> 'b"
+  assumes "linear ( *) scale D"
+  obtains d where "D = (\<lambda>x. scale x d)"
+proof -
+  interpret linear "( *)" scale D by fact
+  show ?thesis
+    by (metis mult.commute mult.left_neutral scale that)
+qed
+
+lemma scale_eq_0_iff [simp]: "scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0"
+  by (metis scale_left_commute right_inverse scale_one scale_scale scale_zero_left)
+
+lemma scale_left_imp_eq:
+  assumes nonzero: "a \<noteq> 0"
+    and scale: "scale a x = scale a y"
+  shows "x = y"
+proof -
+  from scale have "scale a (x - y) = 0"
+     by (simp add: scale_right_diff_distrib)
+  with nonzero have "x - y = 0" by simp
+  then show "x = y" by (simp only: right_minus_eq)
+qed
+
+lemma scale_right_imp_eq:
+  assumes nonzero: "x \<noteq> 0"
+    and scale: "scale a x = scale b x"
+  shows "a = b"
+proof -
+  from scale have "scale (a - b) x = 0"
+     by (simp add: scale_left_diff_distrib)
+  with nonzero have "a - b = 0" by simp
+  then show "a = b" by (simp only: right_minus_eq)
+qed
+
+lemma scale_cancel_left [simp]: "scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0"
+  by (auto intro: scale_left_imp_eq)
+
+lemma scale_cancel_right [simp]: "scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0"
+  by (auto intro: scale_right_imp_eq)
+
+lemma injective_scale: "c \<noteq> 0 \<Longrightarrow> inj (\<lambda>x. scale c x)"
+  by (simp add: inj_on_def)
+
+lemma dependent_def: "dependent P \<longleftrightarrow> (\<exists>a \<in> P. a \<in> span (P - {a}))"
+  unfolding dependent_explicit
+proof safe
+  fix a assume aP: "a \<in> P" and "a \<in> span (P - {a})"
+  then obtain a S u
+    where aP: "a \<in> P" and fS: "finite S" and SP: "S \<subseteq> P" "a \<notin> S" and ua: "(\<Sum>v\<in>S. u v *s v) = a"
+    unfolding span_explicit by blast
+  let ?S = "insert a S"
+  let ?u = "\<lambda>y. if y = a then - 1 else u y"
+  from fS SP have "(\<Sum>v\<in>?S. ?u v *s v) = 0"
+    by (simp add: if_distrib[of "\<lambda>r. r *s a" for a] sum.If_cases field_simps Diff_eq[symmetric] ua)
+  moreover have "finite ?S" "?S \<subseteq> P" "a \<in> ?S" "?u a \<noteq> 0"
+    using fS SP aP by auto
+  ultimately show "\<exists>t u. finite t \<and> t \<subseteq> P \<and> (\<Sum>v\<in>t. u v *s v) = 0 \<and> (\<exists>v\<in>t. u v \<noteq> 0)" by fast
+next
+  fix S u v
+  assume fS: "finite S" and SP: "S \<subseteq> P" and vS: "v \<in> S"
+   and uv: "u v \<noteq> 0" and u: "(\<Sum>v\<in>S. u v *s v) = 0"
+  let ?a = v
+  let ?S = "S - {v}"
+  let ?u = "\<lambda>i. (- u i) / u v"
+  have th0: "?a \<in> P" "finite ?S" "?S \<subseteq> P"
+    using fS SP vS by auto
+  have "(\<Sum>v\<in>?S. ?u v *s v) = (\<Sum>v\<in>S. (- (inverse (u ?a))) *s (u v *s v)) - ?u v *s v"
+    using fS vS uv by (simp add: sum_diff1 field_simps)
+  also have "\<dots> = ?a"
+    unfolding scale_sum_right[symmetric] u using uv by simp
+  finally have "(\<Sum>v\<in>?S. ?u v *s v) = ?a" .
+  with th0 show "\<exists>a \<in> P. a \<in> span (P - {a})"
+    unfolding span_explicit by (auto intro!: bexI[where x="?a"] exI[where x="?S"] exI[where x="?u"])
+qed
+
+lemma dependent_single[simp]: "dependent {x} \<longleftrightarrow> x = 0"
+  unfolding dependent_def by auto
+
+lemma in_span_insert:
+  assumes a: "a \<in> span (insert b S)"
+    and na: "a \<notin> span S"
+  shows "b \<in> span (insert a S)"
+proof -
+  from span_breakdown[of b "insert b S" a, OF insertI1 a]
+  obtain k where k: "a - k *s b \<in> span (S - {b})" by auto
+  have "k \<noteq> 0"
+  proof
+    assume "k = 0"
+    with k span_mono[of "S - {b}" S] have "a \<in> span S" by auto
+    with na show False by blast  
+  qed
+  then have eq: "b = (1/k) *s a - (1/k) *s (a - k *s b)"
+    by (simp add: algebra_simps)
+
+  from k have "(1/k) *s (a - k *s b) \<in> span (S - {b})"
+    by (rule span_scale)
+  also have "... \<subseteq> span (insert a S)"
+    by (rule span_mono) auto
+  finally show ?thesis
+    using k by (subst eq) (blast intro: span_diff span_scale span_base)
+qed
+
+lemma dependent_insertD: assumes a: "a \<notin> span S" and S: "dependent (insert a S)" shows "dependent S"
+proof -
+  have "a \<notin> S" using a by (auto dest: span_base)
+  obtain b where b: "b = a \<or> b \<in> S" "b \<in> span (insert a S - {b})"
+    using S unfolding dependent_def by blast
+  have "b \<noteq> a" "b \<in> S"
+    using b \<open>a \<notin> S\<close> a by auto
+  with b have *: "b \<in> span (insert a (S - {b}))"
+    by (auto simp: insert_Diff_if)
+  show "dependent S"
+  proof cases
+    assume "b \<in> span (S - {b})" with \<open>b \<in> S\<close> show ?thesis
+      by (auto simp add: dependent_def)
+  next
+    assume "b \<notin> span (S - {b})"
+    with * have "a \<in> span (insert b (S - {b}))" by (rule in_span_insert)
+    with a show ?thesis
+      using \<open>b \<in> S\<close> by (auto simp: insert_absorb)
+  qed
+qed
+
+lemma independent_insertI: "a \<notin> span S \<Longrightarrow> independent S \<Longrightarrow> independent (insert a S)"
+  by (auto dest: dependent_insertD)
+
+lemma independent_insert:
+  "independent (insert a S) \<longleftrightarrow> (if a \<in> S then independent S else independent S \<and> a \<notin> span S)"
+proof -
+  have "a \<notin> S \<Longrightarrow> a \<in> span S \<Longrightarrow> dependent (insert a S)"
+    by (auto simp: dependent_def)
+  then show ?thesis
+    by (auto intro: dependent_mono simp: independent_insertI)
+qed
+
+lemma maximal_independent_subset_extend:
+  assumes "S \<subseteq> V" "independent S"
+  shows "\<exists>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B"
+proof -
+  let ?C = "{B. S \<subseteq> B \<and> independent B \<and> B \<subseteq> V}"
+  have "\<exists>M\<in>?C. \<forall>X\<in>?C. M \<subseteq> X \<longrightarrow> X = M"
+  proof (rule subset_Zorn)
+    fix C :: "'b set set" assume "subset.chain ?C C"
+    then have C: "\<And>c. c \<in> C \<Longrightarrow> c \<subseteq> V" "\<And>c. c \<in> C \<Longrightarrow> S \<subseteq> c" "\<And>c. c \<in> C \<Longrightarrow> independent c"
+      "\<And>c d. c \<in> C \<Longrightarrow> d \<in> C \<Longrightarrow> c \<subseteq> d \<or> d \<subseteq> c"
+      unfolding subset.chain_def by blast+
+
+    show "\<exists>U\<in>?C. \<forall>X\<in>C. X \<subseteq> U"
+    proof cases
+      assume "C = {}" with assms show ?thesis
+        by (auto intro!: exI[of _ S])
+    next
+      assume "C \<noteq> {}"
+      with C(2) have "S \<subseteq> \<Union>C"
+        by auto
+      moreover have "independent (\<Union>C)"
+        by (intro independent_Union_directed C)
+      moreover have "\<Union>C \<subseteq> V"
+        using C by auto
+      ultimately show ?thesis
+        by auto
+    qed
+  qed
+  then obtain B where B: "independent B" "B \<subseteq> V" "S \<subseteq> B"
+    and max: "\<And>S. independent S \<Longrightarrow> S \<subseteq> V \<Longrightarrow> B \<subseteq> S \<Longrightarrow> S = B"
+    by auto
+  moreover
+  { assume "\<not> V \<subseteq> span B"
+    then obtain v where "v \<in> V" "v \<notin> span B"
+      by auto
+    with B have "independent (insert v B)" by (auto intro: dependent_insertD)
+    from max[OF this] \<open>v \<in> V\<close> \<open>B \<subseteq> V\<close>
+    have "v \<in> B"
+      by auto
+    with \<open>v \<notin> span B\<close> have False
+      by (auto intro: span_base) }
+  ultimately show ?thesis
+    by (auto intro!: exI[of _ B])
+qed
+
+lemma maximal_independent_subset: "\<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B"
+  by (metis maximal_independent_subset_extend[of "{}"] empty_subsetI independent_empty)
+
+text \<open>Extends a basis from B to a basis of the entire space.\<close>
+definition extend_basis :: "'b set \<Rightarrow> 'b set"
+  where "extend_basis B = (SOME B'. B \<subseteq> B' \<and> independent B' \<and> span B' = UNIV)"
+
+lemma
+  assumes B: "independent B"
+  shows extend_basis_superset: "B \<subseteq> extend_basis B"
+    and independent_extend_basis: "independent (extend_basis B)"
+    and span_extend_basis[simp]: "span (extend_basis B) = UNIV"
+proof -
+  define p where "p B' \<equiv> B \<subseteq> B' \<and> independent B' \<and> span B' = UNIV" for B'
+  obtain B' where "p B'"
+    using maximal_independent_subset_extend[OF subset_UNIV B] by (auto simp: p_def)
+  then have "p (extend_basis B)"
+    unfolding extend_basis_def p_def[symmetric] by (rule someI)
+  then show "B \<subseteq> extend_basis B" "independent (extend_basis B)" "span (extend_basis B) = UNIV"
+    by (auto simp: p_def)
+qed
+
+lemma in_span_delete:
+  assumes a: "a \<in> span S"
+    and na: "a \<notin> span (S - {b})"
+  shows "b \<in> span (insert a (S - {b}))"
+  apply (rule in_span_insert)
+  apply (rule set_rev_mp)
+  apply (rule a)
+  apply (rule span_mono)
+  apply blast
+  apply (rule na)
+  done
+
+lemma span_redundant: "x \<in> span S \<Longrightarrow> span (insert x S) = span S"
+  unfolding span_def by (rule hull_redundant)
+
+lemma span_trans: "x \<in> span S \<Longrightarrow> y \<in> span (insert x S) \<Longrightarrow> y \<in> span S"
+  by (simp only: span_redundant)
+
+lemma span_insert_0[simp]: "span (insert 0 S) = span S"
+  by (metis span_zero span_redundant)
+
+lemma span_delete_0 [simp]: "span(S - {0}) = span S"
+proof
+  show "span (S - {0}) \<subseteq> span S"
+    by (blast intro!: span_mono)
+next
+  have "span S \<subseteq> span(insert 0 (S - {0}))"
+    by (blast intro!: span_mono)
+  also have "... \<subseteq> span(S - {0})"
+    using span_insert_0 by blast
+  finally show "span S \<subseteq> span (S - {0})" .
+qed
+
+lemma span_image_scale:
+  assumes "finite S" and nz: "\<And>x. x \<in> S \<Longrightarrow> c x \<noteq> 0"
+    shows "span ((\<lambda>x. c x *s x) ` S) = span S"
+using assms
+proof (induction S arbitrary: c)
+  case (empty c) show ?case by simp
+next
+  case (insert x F c)
+  show ?case
+  proof (intro set_eqI iffI)
+    fix y
+      assume "y \<in> span ((\<lambda>x. c x *s x) ` insert x F)"
+      then show "y \<in> span (insert x F)"
+        using insert by (force simp: span_breakdown_eq)
+  next
+    fix y
+      assume "y \<in> span (insert x F)"
+      then show "y \<in> span ((\<lambda>x. c x *s x) ` insert x F)"
+        using insert
+        apply (clarsimp simp: span_breakdown_eq)
+        apply (rule_tac x="k / c x" in exI)
+        by simp
+  qed
+qed
+
+lemma exchange_lemma:
+  assumes f: "finite t"
+  and i: "independent s"
+  and sp: "s \<subseteq> span t"
+  shows "\<exists>t'. card t' = card t \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'"
+  using f i sp
+proof (induct "card (t - s)" arbitrary: s t rule: less_induct)
+  case less
+  note ft = `finite t` and s = `independent s` and sp = `s \<subseteq> span t`
+  let ?P = "\<lambda>t'. card t' = card t \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'"
+  let ?ths = "\<exists>t'. ?P t'"
+
+  {
+    assume st: "t \<subseteq> s"
+    from spanning_subset_independent[OF st s sp] st ft span_mono[OF st]
+    have ?ths by (auto intro: span_base)
+  }
+  moreover
+  {
+    assume st:"\<not> t \<subseteq> s"
+    from st obtain b where b: "b \<in> t" "b \<notin> s"
+      by blast
+    from b have "t - {b} - s \<subset> t - s"
+      by blast
+    then have cardlt: "card (t - {b} - s) < card (t - s)"
+      using ft by (auto intro: psubset_card_mono)
+    from b ft have ct0: "card t \<noteq> 0"
+      by auto
+    have ?ths
+    proof cases
+      assume stb: "s \<subseteq> span (t - {b})"
+      from ft have ftb: "finite (t - {b})"
+        by auto
+      from less(1)[OF cardlt ftb s stb]
+      obtain u where u: "card u = card (t - {b})" "s \<subseteq> u" "u \<subseteq> s \<union> (t - {b})" "s \<subseteq> span u"
+        and fu: "finite u" by blast
+      let ?w = "insert b u"
+      have th0: "s \<subseteq> insert b u"
+        using u by blast
+      from u(3) b have "u \<subseteq> s \<union> t"
+        by blast
+      then have th1: "insert b u \<subseteq> s \<union> t"
+        using u b by blast
+      have bu: "b \<notin> u"
+        using b u by blast
+      from u(1) ft b have "card u = (card t - 1)"
+        by auto
+      then have th2: "card (insert b u) = card t"
+        using card_insert_disjoint[OF fu bu] ct0 by auto
+      from u(4) have "s \<subseteq> span u" .
+      also have "\<dots> \<subseteq> span (insert b u)"
+        by (rule span_mono) blast
+      finally have th3: "s \<subseteq> span (insert b u)" .
+      from th0 th1 th2 th3 fu have th: "?P ?w"
+        by blast
+      from th show ?thesis by blast
+    next
+      assume stb: "\<not> s \<subseteq> span (t - {b})"
+      from stb obtain a where a: "a \<in> s" "a \<notin> span (t - {b})"
+        by blast
+      have ab: "a \<noteq> b"
+        using a b by blast
+      have at: "a \<notin> t"
+        using a ab span_base[of a "t- {b}"] by auto
+      have mlt: "card ((insert a (t - {b})) - s) < card (t - s)"
+        using cardlt ft a b by auto
+      have ft': "finite (insert a (t - {b}))"
+        using ft by auto
+      {
+        fix x
+        assume xs: "x \<in> s"
+        have t: "t \<subseteq> insert b (insert a (t - {b}))"
+          using b by auto
+        have bs: "b \<in> span (insert a (t - {b}))"
+          apply (rule in_span_delete)
+          using a sp unfolding subset_eq
+          apply auto
+          done
+        from xs sp have "x \<in> span t"
+          by blast
+        with span_mono[OF t] have x: "x \<in> span (insert b (insert a (t - {b})))" ..
+        from span_trans[OF bs x] have "x \<in> span (insert a (t - {b}))" .
+      }
+      then have sp': "s \<subseteq> span (insert a (t - {b}))"
+        by blast
+      from less(1)[OF mlt ft' s sp'] obtain u where u:
+        "card u = card (insert a (t - {b}))"
+        "finite u" "s \<subseteq> u" "u \<subseteq> s \<union> insert a (t - {b})"
+        "s \<subseteq> span u" by blast
+      from u a b ft at ct0 have "?P u"
+        by auto
+      then show ?thesis by blast
+    qed
+  }
+  ultimately show ?ths by blast
+qed
+
+lemma independent_span_bound:
+  assumes f: "finite t"
+    and i: "independent s"
+    and sp: "s \<subseteq> span t"
+  shows "finite s \<and> card s \<le> card t"
+  by (metis exchange_lemma[OF f i sp] finite_subset card_mono)
+
+lemma independent_explicit_finite_subsets:
+  "independent A \<longleftrightarrow> (\<forall>S \<subseteq> A. finite S \<longrightarrow> (\<forall>u. (\<Sum>v\<in>S. u v *s v) = 0 \<longrightarrow> (\<forall>v\<in>S. u v = 0)))"
+  unfolding dependent_explicit [of A] by (simp add: disj_not2)
+
+lemma independent_if_scalars_zero:
+  assumes fin_A: "finite A"
+  and sum: "\<And>f x. (\<Sum>x\<in>A. f x *s x) = 0 \<Longrightarrow> x \<in> A \<Longrightarrow> f x = 0"
+  shows "independent A"
+proof (unfold independent_explicit_finite_subsets, clarify)
+  fix S v and u :: "'b \<Rightarrow> 'a"
+  assume S: "S \<subseteq> A" and v: "v \<in> S"
+  let ?g = "\<lambda>x. if x \<in> S then u x else 0"
+  have "(\<Sum>v\<in>A. ?g v *s v) = (\<Sum>v\<in>S. u v *s v)"
+    using S fin_A by (auto intro!: sum.mono_neutral_cong_right)
+  also assume "(\<Sum>v\<in>S. u v *s v) = 0"
+  finally have "?g v = 0" using v S sum by force
+  thus "u v = 0"  unfolding if_P[OF v] .
+qed
+
+lemma bij_if_span_eq_span_bases:
+  assumes B: "independent B" and C: "independent C"
+    and eq: "span B = span C"
+  shows "\<exists>f. bij_betw f B C"
+proof cases
+  assume "finite B \<or> finite C"
+  then have "finite B \<and> finite C \<and> card C = card B"
+    using independent_span_bound[of B C] independent_span_bound[of C B] assms
+      span_superset[of B] span_superset[of C]
+    by auto
+  then show ?thesis
+    by (auto intro!: finite_same_card_bij)
+next
+  assume "\<not> (finite B \<or> finite C)"
+  then have "infinite B" "infinite C" by auto
+  { fix B C assume  B: "independent B" and C: "independent C" and "infinite B" "infinite C" and eq: "span B = span C"
+    let ?R = "representation B" and ?R' = "representation C" let ?U = "\<lambda>c. {v. ?R c v \<noteq> 0}"
+    have in_span_C [simp, intro]: \<open>b \<in> B \<Longrightarrow> b \<in> span C\<close> for b unfolding eq[symmetric] by (rule span_base) 
+    have in_span_B [simp, intro]: \<open>c \<in> C \<Longrightarrow> c \<in> span B\<close> for c unfolding eq by (rule span_base) 
+    have \<open>B \<subseteq> (\<Union>c\<in>C. ?U c)\<close>
+    proof
+      fix b assume \<open>b \<in> B\<close>
+      have \<open>b \<in> span C\<close>
+        using \<open>b \<in> B\<close> unfolding eq[symmetric] by (rule span_base)
+      have \<open>(\<Sum>v | ?R' b v \<noteq> 0. \<Sum>w | ?R v w \<noteq> 0. (?R' b v * ?R v w) *s w) =
+          (\<Sum>v | ?R' b v \<noteq> 0. ?R' b v *s (\<Sum>w | ?R v w \<noteq> 0. ?R v w *s w))\<close>
+        by (simp add: scale_sum_right)
+      also have \<open>\<dots> = (\<Sum>v | ?R' b v \<noteq> 0. ?R' b v *s v)\<close>
+        by (auto simp: sum_nonzero_representation_eq B eq span_base representation_ne_zero)
+      also have \<open>\<dots> = b\<close>
+        by (rule sum_nonzero_representation_eq[OF C \<open>b \<in> span C\<close>])
+      finally have "?R b b = ?R (\<Sum>v | ?R' b v \<noteq> 0. \<Sum>w | ?R v w \<noteq> 0. (?R' b v * ?R v w) *s w) b"
+        by simp
+      also have \<open>\<dots> = (\<Sum>v | ?R' b v \<noteq> 0. \<Sum>w | ?R v w \<noteq> 0. ?R' b v * ?R v w * ?R w b)\<close>
+        using B \<open>b \<in> B\<close>
+        apply (subst representation_sum[OF B])
+         apply (fastforce intro: span_sum span_scale span_base representation_ne_zero)
+        apply (rule sum.cong[OF refl])
+        apply (subst representation_sum[OF B])
+         apply (simp add: span_sum span_scale span_base representation_ne_zero)
+        apply (simp add: representation_scale[OF B] span_base representation_ne_zero)
+        done
+      finally have "(\<Sum>v | ?R' b v \<noteq> 0. \<Sum>w | ?R v w \<noteq> 0. ?R' b v * ?R v w * ?R w b) \<noteq> 0"
+        using representation_basis[OF B \<open>b \<in> B\<close>] by auto
+      then obtain v w where bv: "?R' b v \<noteq> 0" and vw: "?R v w \<noteq> 0" and "?R' b v * ?R v w * ?R w b \<noteq> 0"
+        by (blast elim: sum.not_neutral_contains_not_neutral)
+      with representation_basis[OF B, of w] vw[THEN representation_ne_zero]
+      have \<open>?R' b v \<noteq> 0\<close> \<open>?R v b \<noteq> 0\<close> by (auto split: if_splits)
+      then show \<open>b \<in> (\<Union>c\<in>C. ?U c)\<close>
+        by (auto dest: representation_ne_zero)
+    qed
+    then have B_eq: \<open>B = (\<Union>c\<in>C. ?U c)\<close>
+      by (auto intro: span_base representation_ne_zero eq)
+    have "ordLeq3 (card_of B) (card_of C)"
+    proof (subst B_eq, rule card_of_UNION_ordLeq_infinite[OF \<open>infinite C\<close>])
+      show "ordLeq3 (card_of C) (card_of C)"
+        by (intro ordLeq_refl card_of_Card_order)
+      show "\<forall>c\<in>C. ordLeq3 (card_of {v. representation B c v \<noteq> 0}) (card_of C)"
+        by (intro ballI ordLeq3_finite_infinite \<open>infinite C\<close> finite_representation)
+    qed }
+  from this[of B C] this[of C B] B C eq \<open>infinite C\<close> \<open>infinite B\<close>
+  show ?thesis by (auto simp add: ordIso_iff_ordLeq card_of_ordIso)
+qed
+
+definition dim :: "'b set \<Rightarrow> nat"
+  where "dim V = card (SOME b. independent b \<and> span b = span V)"
+
+lemma dim_eq_card:
+  assumes BV: "span B = span V" and B: "independent B"
+  shows "dim V = card B"
+proof -
+  define p where "p b \<equiv> independent b \<and> span b = span V" for b
+  have "p (SOME B. p B)"
+    using assms by (intro someI[of p B]) (auto simp: p_def)
+  then have "\<exists>f. bij_betw f B (SOME B. p B)"
+    by (subst (asm) p_def, intro bij_if_span_eq_span_bases[OF B]) (simp_all add: BV)
+  then have "card B = card (SOME B. p B)"
+    by (auto intro: bij_betw_same_card)
+  then show ?thesis
+    by (simp add: dim_def p_def)
+qed
+
+lemma basis_card_eq_dim: "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> card B = dim V"
+  using dim_eq_card[of B V] span_mono[of B V] span_minimal[OF _ subspace_span, of V B] by auto
+
+lemma basis_exists: "\<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> card B = dim V"
+  by (meson basis_card_eq_dim empty_subsetI independent_empty maximal_independent_subset_extend)
+
+lemma dim_eq_card_independent: "independent B \<Longrightarrow> dim B = card B"
+  by (rule dim_eq_card[OF refl])
+
+lemma dim_span[simp]: "dim (span S) = dim S"
+  by (simp add: dim_def span_span)
+
+lemma dim_span_eq_card_independent: "independent B \<Longrightarrow> dim (span B) = card B"
+  by (simp add: dim_span dim_eq_card)
+
+lemma dim_le_card: assumes "V \<subseteq> span W" "finite W" shows "dim V \<le> card W"
+proof -
+  obtain A where "independent A" "A \<subseteq> V" "V \<subseteq> span A"
+    using maximal_independent_subset[of V] by auto
+  with assms independent_span_bound[of W A] basis_card_eq_dim[of A V]
+  show ?thesis by auto
+qed
+
+lemma span_eq_dim: "span S = span T \<Longrightarrow> dim S = dim T"
+  by (metis dim_span)
+
+corollary dim_le_card':
+  "finite s \<Longrightarrow> dim s \<le> card s"
+  by (metis basis_exists card_mono)
+
+lemma span_card_ge_dim:
+  "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> finite B \<Longrightarrow> dim V \<le> card B"
+  by (simp add: dim_le_card)
+
+lemma dim_unique:
+  "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> card B = n \<Longrightarrow> dim V = n"
+  by (metis basis_card_eq_dim)
+
+lemma subspace_sums: "\<lbrakk>subspace S; subspace T\<rbrakk> \<Longrightarrow> subspace {x + y|x y. x \<in> S \<and> y \<in> T}"
+  apply (simp add: subspace_def)
+  apply (intro conjI impI allI)
+  using add.right_neutral apply blast
+   apply clarify
+   apply (metis add.assoc add.left_commute)
+  using scale_right_distrib by blast
+
+end
+
+lemma linear_iff: "linear s1 s2 f \<longleftrightarrow>
+  (vector_space s1 \<and> vector_space s2 \<and> (\<forall>x y. f (x + y) = f x + f y) \<and> (\<forall>c x. f (s1 c x) = s2 c (f x)))"
+  unfolding linear_def module_hom_iff vector_space_def module_def by auto
+
+context begin
+qualified lemma linear_compose: "linear s1 s2 f \<Longrightarrow> linear s2 s3 g \<Longrightarrow> linear s1 s3 (g o f)"
+  unfolding module_hom_iff_linear[symmetric]
+  by (rule module_hom_compose)
+end
+
+locale vector_space_pair = vs1: vector_space s1 + vs2: vector_space s2
+  for s1 :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b" (infixr "*a" 75)
+  and s2 :: "'a::field \<Rightarrow> 'c::ab_group_add \<Rightarrow> 'c" (infixr "*b" 75)
+begin
+
+context fixes f assumes "linear s1 s2 f" begin
+interpretation linear s1 s2 f by fact
+lemmas\<comment>\<open>from locale \<open>module_hom\<close>\<close>
+      linear_0 = zero
+  and linear_add = add
+  and linear_scale = scale
+  and linear_neg = neg
+  and linear_diff = diff
+  and linear_sum = sum
+  and linear_inj_on_iff_eq_0 = inj_on_iff_eq_0
+  and linear_inj_iff_eq_0 = inj_iff_eq_0
+  and linear_subspace_image = subspace_image
+  and linear_subspace_vimage = subspace_vimage
+  and linear_subspace_kernel = subspace_kernel
+  and linear_span_image = span_image
+  and linear_dependent_inj_imageD = dependent_inj_imageD
+  and linear_eq_0_on_span = eq_0_on_span
+  and linear_independent_injective_image = independent_injective_image
+  and linear_inj_on_span_independent_image = inj_on_span_independent_image
+  and linear_inj_on_span_iff_independent_image = inj_on_span_iff_independent_image
+  and linear_subspace_linear_preimage = subspace_linear_preimage
+  and linear_spans_image = spans_image
+  and linear_spanning_surjective_image = spanning_surjective_image
+end
+
+sublocale module_pair
+  rewrites "module_hom = linear"
+  by unfold_locales (fact module_hom_eq_linear)
+
+lemmas\<comment>\<open>from locale \<open>module_pair\<close>\<close>
+      linear_eq_on_span = module_hom_eq_on_span
+  and linear_compose_scale_right = module_hom_scale
+  and linear_compose_add = module_hom_add
+  and linear_zero = module_hom_zero
+  and linear_compose_sub = module_hom_sub
+  and linear_compose_neg = module_hom_neg
+  and linear_compose_scale = module_hom_compose_scale
+
+lemma linear_indep_image_lemma:
+  assumes lf: "linear s1 s2 f"
+    and fB: "finite B"
+    and ifB: "vs2.independent (f ` B)"
+    and fi: "inj_on f B"
+    and xsB: "x \<in> vs1.span B"
+    and fx: "f x = 0"
+  shows "x = 0"
+  using fB ifB fi xsB fx
+proof (induct arbitrary: x rule: finite_induct[OF fB])
+  case 1
+  then show ?case by auto
+next
+  case (2 a b x)
+  have fb: "finite b" using "2.prems" by simp
+  have th0: "f ` b \<subseteq> f ` (insert a b)"
+    apply (rule image_mono)
+    apply blast
+    done
+  from vs2.independent_mono[ OF "2.prems"(2) th0]
+  have ifb: "vs2.independent (f ` b)"  .
+  have fib: "inj_on f b"
+    apply (rule subset_inj_on [OF "2.prems"(3)])
+    apply blast
+    done
+  from vs1.span_breakdown[of a "insert a b", simplified, OF "2.prems"(4)]
+  obtain k where k: "x - k *a a \<in> vs1.span (b - {a})"
+    by blast
+  have "f (x - k *a a) \<in> vs2.span (f ` b)"
+    unfolding linear_span_image[OF lf]
+    apply (rule imageI)
+    using k vs1.span_mono[of "b - {a}" b]
+    apply blast
+    done
+  then have "f x - k *b f a \<in> vs2.span (f ` b)"
+    by (simp add: linear_diff linear_scale lf)
+  then have th: "-k *b f a \<in> vs2.span (f ` b)"
+    using "2.prems"(5) by simp
+  have xsb: "x \<in> vs1.span b"
+  proof (cases "k = 0")
+    case True
+    with k have "x \<in> vs1.span (b - {a})" by simp
+    then show ?thesis using vs1.span_mono[of "b - {a}" b]
+      by blast
+  next
+    case False
+    with vs2.span_scale[OF th, of "- 1/ k"]
+    have th1: "f a \<in> vs2.span (f ` b)"
+      by auto
+    from inj_on_image_set_diff[OF "2.prems"(3), of "insert a b " "{a}", symmetric]
+    have tha: "f ` insert a b - f ` {a} = f ` (insert a b - {a})" by blast
+    from "2.prems"(2) [unfolded vs2.dependent_def bex_simps(8), rule_format, of "f a"]
+    have "f a \<notin> vs2.span (f ` b)" using tha
+      using "2.hyps"(2)
+      "2.prems"(3) by auto
+    with th1 have False by blast
+    then show ?thesis by blast
+  qed
+  from "2.hyps"(3)[OF fb ifb fib xsb "2.prems"(5)] show "x = 0" .
+qed
+
+lemma linear_eq_on:
+  assumes l: "linear s1 s2 f" "linear s1 s2 g"
+  assumes x: "x \<in> vs1.span B" and eq: "\<And>b. b \<in> B \<Longrightarrow> f b = g b"
+  shows "f x = g x"
+proof -
+  interpret d: linear s1 s2 "\<lambda>x. f x - g x"
+    using l by (intro linear_compose_sub) (auto simp: module_hom_iff_linear)
+  have "f x - g x = 0"
+    by (rule d.eq_0_on_span[OF _ x]) (auto simp: eq)
+  then show ?thesis by auto
+qed
+
+definition construct :: "'b set \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'c)"
+  where "construct B g v = (\<Sum>b | vs1.representation (vs1.extend_basis B) v b \<noteq> 0.
+      vs1.representation (vs1.extend_basis B) v b *b (if b \<in> B then g b else 0))"
+
+lemma construct_cong: "(\<And>b. b \<in> B \<Longrightarrow> f b = g b) \<Longrightarrow> construct B f = construct B g"
+  unfolding construct_def by (rule ext, auto intro!: sum.cong)
+
+lemma linear_construct:
+  assumes B[simp]: "vs1.independent B"
+  shows "linear s1 s2 (construct B f)"
+  unfolding module_hom_iff_linear linear_iff
+proof safe
+  have eB[simp]: "vs1.independent (vs1.extend_basis B)"
+    using vs1.independent_extend_basis[OF B] .
+  let ?R = "vs1.representation (vs1.extend_basis B)"
+  fix c x y
+  have "construct B f (x + y) =
+    (\<Sum>b\<in>{b. ?R x b \<noteq> 0} \<union> {b. ?R y b \<noteq> 0}. ?R (x + y) b *b (if b \<in> B then f b else 0))"
+    by (auto intro!: sum.mono_neutral_cong_left simp: vs1.finite_representation vs1.representation_add construct_def)
+  also have "\<dots> = construct B f x + construct B f y"
+    by (auto simp: construct_def vs1.representation_add vs2.scale_left_distrib sum.distrib
+      intro!: arg_cong2[where f="(+)"] sum.mono_neutral_cong_right vs1.finite_representation)
+  finally show "construct B f (x + y) = construct B f x + construct B f y" .
+
+  show "construct B f (c *a x) = c *b construct B f x"
+    by (auto simp del: vs2.scale_scale intro!: sum.mono_neutral_cong_left vs1.finite_representation
+      simp add: construct_def vs2.scale_scale[symmetric] vs1.representation_scale vs2.scale_sum_right)
+qed intro_locales
+
+lemma construct_basis:
+  assumes B[simp]: "vs1.independent B" and b: "b \<in> B"
+  shows "construct B f b = f b"
+proof -
+  have *: "vs1.representation (vs1.extend_basis B) b = (\<lambda>v. if v = b then 1 else 0)"
+    using vs1.extend_basis_superset[OF B] b
+    by (intro vs1.representation_basis vs1.independent_extend_basis) auto
+  then have "{v. vs1.representation (vs1.extend_basis B) b v \<noteq> 0} = {b}"
+    by auto
+  then show ?thesis
+    unfolding construct_def by (simp add: * b)
+qed
+
+lemma construct_outside:
+  assumes B: "vs1.independent B" and v: "v \<in> vs1.span (vs1.extend_basis B - B)"
+  shows "construct B f v = 0"
+  unfolding construct_def
+proof (clarsimp intro!: sum.neutral simp del: vs2.scale_eq_0_iff)
+  fix b assume "b \<in> B"
+  then have "vs1.representation (vs1.extend_basis B - B) v b = 0"
+    using vs1.representation_ne_zero[of "vs1.extend_basis B - B" v b] by auto
+  moreover have "vs1.representation (vs1.extend_basis B) v = vs1.representation (vs1.extend_basis B - B) v"
+    using vs1.representation_extend[OF vs1.independent_extend_basis[OF B] v] by auto
+  ultimately show "vs1.representation (vs1.extend_basis B) v b *b f b = 0"
+    by simp
+qed
+
+lemma construct_add:
+  assumes B[simp]: "vs1.independent B"
+  shows "construct B (\<lambda>x. f x + g x) v = construct B f v + construct B g v"
+proof (rule linear_eq_on)
+  show "v \<in> vs1.span (vs1.extend_basis B)" by simp
+  show "b \<in> vs1.extend_basis B \<Longrightarrow> construct B (\<lambda>x. f x + g x) b = construct B f b + construct B g b" for b
+    using construct_outside[OF B vs1.span_base, of b] by (cases "b \<in> B") (auto simp: construct_basis)
+qed (intro linear_compose_add linear_construct B)+
+
+lemma construct_scale:
+  assumes B[simp]: "vs1.independent B"
+  shows "construct B (\<lambda>x. c *b f x) v = c *b construct B f v"
+proof (rule linear_eq_on)
+  show "v \<in> vs1.span (vs1.extend_basis B)" by simp
+  show "b \<in> vs1.extend_basis B \<Longrightarrow> construct B (\<lambda>x. c *b f x) b = c *b construct B f b" for b
+    using construct_outside[OF B vs1.span_base, of b] by (cases "b \<in> B") (auto simp: construct_basis)
+qed (intro linear_construct module_hom_scale B)+
+
+lemma construct_in_span:
+  assumes B[simp]: "vs1.independent B"
+  shows "construct B f v \<in> vs2.span (f ` B)"
+proof -
+  interpret c: linear s1 s2 "construct B f" by (rule linear_construct) fact
+  let ?R = "vs1.representation B"
+  have "v \<in> vs1.span ((vs1.extend_basis B - B) \<union> B)"
+    by (auto simp: Un_absorb2 vs1.extend_basis_superset)
+  then obtain x y where "v = x + y" "x \<in> vs1.span (vs1.extend_basis B - B)" "y \<in> vs1.span B"
+    unfolding vs1.span_Un by auto
+  moreover have "construct B f (\<Sum>b | ?R y b \<noteq> 0. ?R y b *a b) \<in> vs2.span (f ` B)"
+    by (auto simp add: c.sum c.scale construct_basis vs1.representation_ne_zero
+      intro!: vs2.span_sum vs2.span_scale intro: vs2.span_base )
+  ultimately show "construct B f v \<in> vs2.span (f ` B)"
+    by (auto simp add: c.add construct_outside vs1.sum_nonzero_representation_eq)
+qed
+
+lemma linear_compose_sum:
+  assumes lS: "\<forall>a \<in> S. linear s1 s2 (f a)"
+  shows "linear s1 s2 (\<lambda>x. sum (\<lambda>a. f a x) S)"
+proof (cases "finite S")
+  case True
+  then show ?thesis
+    using lS by induct (simp_all add: linear_zero linear_compose_add)
+next
+  case False
+  then show ?thesis
+    by (simp add: linear_zero)
+qed
+
+lemma in_span_in_range_construct:
+  "x \<in> range (construct B f)" if i: "vs1.independent B" and x: "x \<in> vs2.span (f ` B)"
+proof -
+  interpret linear "( *a)" "( *b)" "construct B f"
+    using i by (rule linear_construct)
+  obtain bb :: "('b \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'b set \<Rightarrow> 'b" where
+    "\<forall>x0 x1 x2. (\<exists>v4. v4 \<in> x2 \<and> x1 v4 \<noteq> x0 v4) = (bb x0 x1 x2 \<in> x2 \<and> x1 (bb x0 x1 x2) \<noteq> x0 (bb x0 x1 x2))"
+    by moura
+  then have f2: "\<forall>B Ba f fa. (B \<noteq> Ba \<or> bb fa f Ba \<in> Ba \<and> f (bb fa f Ba) \<noteq> fa (bb fa f Ba)) \<or> f ` B = fa ` Ba"
+    by (meson image_cong)
+  have "vs1.span B \<subseteq> vs1.span (vs1.extend_basis B)"
+    by (simp add: vs1.extend_basis_superset[OF i] vs1.span_mono)
+  then show "x \<in> range (construct B f)"
+    using f2 x by (metis (no_types) construct_basis[OF i, of _ f]
+        vs1.span_extend_basis[OF i] set_mp span_image spans_image)
+qed
+
+lemma range_construct_eq_span:
+  "range (construct B f) = vs2.span (f ` B)"
+  if "vs1.independent B"
+  by (auto simp: that construct_in_span in_span_in_range_construct)
+
+lemma linear_independent_extend_subspace:
+  \<comment>\<open>legacy: use @{term construct} instead\<close>
+  assumes "vs1.independent B"
+  shows "\<exists>g. linear s1 s2 g \<and> (\<forall>x\<in>B. g x = f x) \<and> range g = vs2.span (f`B)"
+  by (rule exI[where x="construct B f"])
+    (auto simp: linear_construct assms construct_basis range_construct_eq_span)
+
+lemma linear_independent_extend:
+  "vs1.independent B \<Longrightarrow> \<exists>g. linear s1 s2 g \<and> (\<forall>x\<in>B. g x = f x)"
+  using linear_independent_extend_subspace[of B f] by auto
+
+lemma linear_exists_left_inverse_on:
+  assumes lf: "linear s1 s2 f"
+  assumes V: "vs1.subspace V" and f: "inj_on f V"
+  shows "\<exists>g\<in>UNIV \<rightarrow> V. linear s2 s1 g \<and> (\<forall>v\<in>V. g (f v) = v)"
+proof -
+  interpret linear s1 s2 f by fact
+  obtain B where V_eq: "V = vs1.span B" and B: "vs1.independent B"
+    using vs1.maximal_independent_subset[of V] vs1.span_minimal[OF _ \<open>vs1.subspace V\<close>] by auto
+  have f: "inj_on f (vs1.span B)"
+    using f unfolding V_eq .
+  show ?thesis
+  proof (intro bexI ballI conjI)
+    interpret p: vector_space_pair s2 s1 by unfold_locales
+    have fB: "vs2.independent (f ` B)"
+      using independent_injective_image[OF B f] .
+    let ?g = "p.construct (f ` B) (the_inv_into B f)"
+    show "linear ( *b) ( *a) ?g"
+      by (rule p.linear_construct[OF fB])
+    have "?g b \<in> vs1.span (the_inv_into B f ` f ` B)" for b
+      by (intro p.construct_in_span fB)
+    moreover have "the_inv_into B f ` f ` B = B"
+      by (auto simp: image_comp comp_def the_inv_into_f_f inj_on_subset[OF f vs1.span_superset]
+          cong: image_cong)
+    ultimately show "?g \<in> UNIV \<rightarrow> V"
+      by (auto simp: V_eq)
+    have "(?g \<circ> f) v = id v" if "v \<in> vs1.span B" for v
+    proof (rule vector_space_pair.linear_eq_on[where x=v])
+      show "vector_space_pair ( *a) ( *a)" by unfold_locales
+      show "linear ( *a) ( *a) (?g \<circ> f)"
+        apply (rule Vector_Spaces.linear_compose[of _ "( *b)"])
+        subgoal by unfold_locales
+        apply fact
+        done
+      show "linear ( *a) ( *a) id" by (rule vs1.linear_id)
+      show "v \<in> vs1.span B" by fact
+      show "b \<in> B \<Longrightarrow> (p.construct (f ` B) (the_inv_into B f) \<circ> f) b = id b" for b
+        by (simp add: p.construct_basis fB the_inv_into_f_f inj_on_subset[OF f vs1.span_superset])
+    qed
+    then show "v \<in> V \<Longrightarrow> ?g (f v) = v" for v by (auto simp: comp_def id_def V_eq)
+  qed
+qed
+
+lemma linear_exists_right_inverse_on:
+  assumes lf: "linear s1 s2 f"
+  assumes "vs1.subspace V"
+  shows "\<exists>g\<in>UNIV \<rightarrow> V. linear s2 s1 g \<and> (\<forall>v\<in>f ` V. f (g v) = v)"
+proof -
+  obtain B where V_eq: "V = vs1.span B" and B: "vs1.independent B"
+    using vs1.maximal_independent_subset[of V] vs1.span_minimal[OF _ \<open>vs1.subspace V\<close>] by auto
+  obtain C where C: "vs2.independent C" and fB_C: "f ` B \<subseteq> vs2.span C" "C \<subseteq> f ` B"
+    using vs2.maximal_independent_subset[of "f ` B"] by auto
+  then have "\<forall>v\<in>C. \<exists>b\<in>B. v = f b" by auto
+  then obtain g where g: "\<And>v. v \<in> C \<Longrightarrow> g v \<in> B" "\<And>v. v \<in> C \<Longrightarrow> f (g v) = v" by metis
+  show ?thesis
+  proof (intro bexI ballI conjI)
+    interpret p: vector_space_pair s2 s1 by unfold_locales
+    let ?g = "p.construct C g"
+    show "linear ( *b) ( *a) ?g"
+      by (rule p.linear_construct[OF C])
+    have "?g v \<in> vs1.span (g ` C)" for v
+      by (rule p.construct_in_span[OF C])
+    also have "\<dots> \<subseteq> V" unfolding V_eq using g by (intro vs1.span_mono) auto
+    finally show "?g \<in> UNIV \<rightarrow> V" by auto
+    have "(f \<circ> ?g) v = id v" if v: "v \<in> f ` V" for v
+    proof (rule vector_space_pair.linear_eq_on[where x=v])
+      show "vector_space_pair ( *b) ( *b)" by unfold_locales
+      show "linear ( *b) ( *b) (f \<circ> ?g)"
+        apply (rule Vector_Spaces.linear_compose[of _ "( *a)"])
+        apply fact
+        subgoal by fact
+        done
+      show "linear ( *b) ( *b) id" by (rule vs2.linear_id)
+      have "vs2.span (f ` B) = vs2.span C"
+        using fB_C vs2.span_mono[of C "f ` B"] vs2.span_minimal[of "f`B" "vs2.span C"] by (auto simp: vs2.subspace_span)
+      then show "v \<in> vs2.span C"
+        using v linear_span_image[OF lf, of B] by (simp add: V_eq)
+      show "(f \<circ> p.construct C g) b = id b" if b: "b \<in> C" for b
+        by (auto simp: p.construct_basis g C b)
+    qed
+    then show "v \<in> f ` V \<Longrightarrow> f (?g v) = v" for v by (auto simp: comp_def id_def)
+  qed
+qed
+
+lemma linear_inj_on_left_inverse:
+  assumes lf: "linear s1 s2 f"
+  assumes fi: "inj_on f (vs1.span S)"
+  shows "\<exists>g. range g \<subseteq> vs1.span S \<and> linear s2 s1 g \<and> (\<forall>x\<in>vs1.span S. g (f x) = x)"
+  using linear_exists_left_inverse_on[OF lf vs1.subspace_span fi]
+  by (auto simp: linear_iff_module_hom)
+
+lemma linear_injective_left_inverse: "linear s1 s2 f \<Longrightarrow> inj f \<Longrightarrow> \<exists>g. linear s2 s1 g \<and> g \<circ> f = id"
+  using linear_inj_on_left_inverse[of f UNIV] by (auto simp: fun_eq_iff vs1.span_UNIV)
+
+lemma linear_surj_right_inverse:
+  assumes lf: "linear s1 s2 f"
+  assumes sf: "vs2.span T \<subseteq> f`vs1.span S"
+  shows "\<exists>g. range g \<subseteq> vs1.span S \<and> linear s2 s1 g \<and> (\<forall>x\<in>vs2.span T. f (g x) = x)"
+  using linear_exists_right_inverse_on[OF lf vs1.subspace_span, of S] sf
+  by (auto simp: linear_iff_module_hom)
+
+lemma linear_surjective_right_inverse: "linear s1 s2 f \<Longrightarrow> surj f \<Longrightarrow> \<exists>g. linear s2 s1 g \<and> f \<circ> g = id"
+  using linear_surj_right_inverse[of f UNIV UNIV]
+  by (auto simp: vs1.span_UNIV vs2.span_UNIV fun_eq_iff)
+
+end
+
+lemma surjective_iff_injective_gen:
+  assumes fS: "finite S"
+    and fT: "finite T"
+    and c: "card S = card T"
+    and ST: "f ` S \<subseteq> T"
+  shows "(\<forall>y \<in> T. \<exists>x \<in> S. f x = y) \<longleftrightarrow> inj_on f S"
+  (is "?lhs \<longleftrightarrow> ?rhs")
+proof
+  assume h: "?lhs"
+  {
+    fix x y
+    assume x: "x \<in> S"
+    assume y: "y \<in> S"
+    assume f: "f x = f y"
+    from x fS have S0: "card S \<noteq> 0"
+      by auto
+    have "x = y"
+    proof (rule ccontr)
+      assume xy: "\<not> ?thesis"
+      have th: "card S \<le> card (f ` (S - {y}))"
+        unfolding c
+        apply (rule card_mono)
+        apply (rule finite_imageI)
+        using fS apply simp
+        using h xy x y f unfolding subset_eq image_iff
+        apply auto
+        apply (case_tac "xa = f x")
+        apply (rule bexI[where x=x])
+        apply auto
+        done
+      also have " \<dots> \<le> card (S - {y})"
+        apply (rule card_image_le)
+        using fS by simp
+      also have "\<dots> \<le> card S - 1" using y fS by simp
+      finally show False using S0 by arith
+    qed
+  }
+  then show ?rhs
+    unfolding inj_on_def by blast
+next
+  assume h: ?rhs
+  have "f ` S = T"
+    apply (rule card_subset_eq[OF fT ST])
+    unfolding card_image[OF h]
+    apply (rule c)
+    done
+  then show ?lhs by blast
+qed
+
+locale finite_dimensional_vector_space = vector_space +
+  fixes Basis :: "'b set"
+  assumes finite_Basis: "finite Basis"
+  and independent_Basis: "independent Basis"
+  and span_Basis: "span Basis = UNIV"
+begin
+
+definition "dimension = card Basis"
+
+lemma finiteI_independent: "independent B \<Longrightarrow> finite B"
+  using independent_span_bound[OF finite_Basis, of B] by (auto simp: span_Basis)
+
+lemma dim_empty [simp]: "dim {} = 0"
+  by (rule dim_unique[OF order_refl]) (auto simp: dependent_def)
+
+lemma dim_insert:
+  "dim (insert x S) = (if x \<in> span S then dim S else dim S + 1)"
+proof -
+  show ?thesis
+  proof (cases "x \<in> span S")
+    case True then show ?thesis
+      by (metis dim_span span_redundant)
+  next
+    case False
+    obtain B where B: "B \<subseteq> span S" "independent B" "span S \<subseteq> span B" "card B = dim (span S)"
+      using basis_exists [of "span S"] by blast
+    have 1: "insert x B \<subseteq> span (insert x S)"
+      by (meson B(1) insertI1 insert_subset order_trans span_base span_mono subset_insertI)
+    have 2: "span (insert x S) \<subseteq> span (insert x B)"
+      by (metis \<open>B \<subseteq> span S\<close> \<open>span S \<subseteq> span B\<close> span_breakdown_eq span_subspace subsetI subspace_span)
+    have 3: "independent (insert x B)"
+      by (metis B independent_insert span_subspace subspace_span False)
+    have "dim (span (insert x S)) = Suc (dim S)"
+      apply (rule dim_unique [OF 1 2 3])
+      by (metis B False card_insert_disjoint dim_span finiteI_independent span_base span_eq span_span)
+    then show ?thesis
+      by (metis False Suc_eq_plus1 dim_span)
+  qed
+qed
+
+lemma dim_singleton [simp]:
+  "dim{x} = (if x = 0 then 0 else 1)"
+  by (simp add: dim_insert)
+
+proposition choose_subspace_of_subspace:
+  assumes "n \<le> dim S"
+  obtains T where "subspace T" "T \<subseteq> span S" "dim T = n"
+proof -
+  have "\<exists>T. subspace T \<and> T \<subseteq> span S \<and> dim T = n"
+  using assms
+  proof (induction n)
+    case 0 then show ?case by (auto intro!: exI[where x="{0}"] span_zero)
+  next
+    case (Suc n)
+    then obtain T where "subspace T" "T \<subseteq> span S" "dim T = n"
+      by force
+    then show ?case
+    proof (cases "span S \<subseteq> span T")
+      case True
+      have "dim S = dim T"
+        apply (rule span_eq_dim [OF subset_antisym [OF True]])
+        by (simp add: \<open>T \<subseteq> span S\<close> span_minimal subspace_span)
+      then show ?thesis
+        using Suc.prems \<open>dim T = n\<close> by linarith
+    next
+      case False
+      then obtain y where y: "y \<in> S" "y \<notin> T"
+        by (meson span_mono subsetI)
+      then have "span (insert y T) \<subseteq> span S"
+        by (metis (no_types) \<open>T \<subseteq> span S\<close> subsetD insert_subset span_superset span_mono span_span)
+      with \<open>dim T = n\<close>  \<open>subspace T\<close> y show ?thesis
+        apply (rule_tac x="span(insert y T)" in exI)
+        apply (auto simp: dim_insert dim_span subspace_span)
+        using span_eq_iff by blast
+    qed
+  qed
+  with that show ?thesis by blast
+qed
+
+lemma basis_subspace_exists:
+   "subspace S
+        \<Longrightarrow> \<exists>b. finite b \<and> b \<subseteq> S \<and>
+                independent b \<and> span b = S \<and> card b = dim S"
+  by (meson basis_exists finiteI_independent span_subspace)
+
+lemma dim_mono: assumes "V \<subseteq> span W" shows "dim V \<le> dim W"
+proof -
+  obtain B where "independent B" "B \<subseteq> W" "W \<subseteq> span B"
+    using maximal_independent_subset[of W] by auto
+  with dim_le_card[of V B] assms independent_span_bound[of Basis B] basis_card_eq_dim[of B W]
+    span_mono[of B W] span_minimal[OF _ subspace_span, of W B]
+  show ?thesis
+    by (auto simp: finite_Basis span_Basis)
+qed
+
+lemma dim_subset: "S \<subseteq> T \<Longrightarrow> dim S \<le> dim T"
+  using dim_mono[of S T] by (auto intro: span_base)
+
+lemma dim_eq_0 [simp]:
+  "dim S = 0 \<longleftrightarrow> S \<subseteq> {0}"
+  using basis_exists finiteI_independent
+  apply safe
+  subgoal by fastforce
+  by (metis dim_singleton dim_subset le_0_eq)
+
+lemma dim_UNIV[simp]: "dim UNIV = card Basis"
+  using dim_eq_card[of Basis UNIV] by (simp add: independent_Basis span_Basis span_UNIV)
+
+lemma independent_card_le_dim: assumes "B \<subseteq> V" and "independent B" shows "card B \<le> dim V"
+  by (subst dim_eq_card[symmetric, OF refl \<open>independent B\<close>]) (rule dim_subset[OF \<open>B \<subseteq> V\<close>])
+
+lemma dim_subset_UNIV: "dim S \<le> dimension"
+  by (metis dim_subset subset_UNIV dim_UNIV dimension_def)
+
+lemma card_ge_dim_independent:
+  assumes BV: "B \<subseteq> V"
+    and iB: "independent B"
+    and dVB: "dim V \<le> card B"
+  shows "V \<subseteq> span B"
+proof
+  fix a
+  assume aV: "a \<in> V"
+  {
+    assume aB: "a \<notin> span B"
+    then have iaB: "independent (insert a B)"
+      using iB aV BV by (simp add: independent_insert)
+    from aV BV have th0: "insert a B \<subseteq> V"
+      by blast
+    from aB have "a \<notin>B"
+      by (auto simp add: span_base)
+    with independent_card_le_dim[OF th0 iaB] dVB finiteI_independent[OF iB]
+    have False by auto
+  }
+  then show "a \<in> span B" by blast
+qed
+
+lemma card_le_dim_spanning:
+  assumes BV: "B \<subseteq> V"
+    and VB: "V \<subseteq> span B"
+    and fB: "finite B"
+    and dVB: "dim V \<ge> card B"
+  shows "independent B"
+proof -
+  {
+    fix a
+    assume a: "a \<in> B" "a \<in> span (B - {a})"
+    from a fB have c0: "card B \<noteq> 0"
+      by auto
+    from a fB have cb: "card (B - {a}) = card B - 1"
+      by auto
+    {
+      fix x
+      assume x: "x \<in> V"
+      from a have eq: "insert a (B - {a}) = B"
+        by blast
+      from x VB have x': "x \<in> span B"
+        by blast
+      from span_trans[OF a(2), unfolded eq, OF x']
+      have "x \<in> span (B - {a})" .
+    }
+    then have th1: "V \<subseteq> span (B - {a})"
+      by blast
+    have th2: "finite (B - {a})"
+      using fB by auto
+    from dim_le_card[OF th1 th2]
+    have c: "dim V \<le> card (B - {a})" .
+    from c c0 dVB cb have False by simp
+  }
+  then show ?thesis
+    unfolding dependent_def by blast
+qed
+
+lemma card_eq_dim: "B \<subseteq> V \<Longrightarrow> card B = dim V \<Longrightarrow> finite B \<Longrightarrow> independent B \<longleftrightarrow> V \<subseteq> span B"
+  by (metis order_eq_iff card_le_dim_spanning card_ge_dim_independent)
+
+lemma subspace_dim_equal:
+  assumes "subspace S"
+    and "subspace T"
+    and "S \<subseteq> T"
+    and "dim S \<ge> dim T"
+  shows "S = T"
+proof -
+  obtain B where B: "B \<le> S" "independent B \<and> S \<subseteq> span B" "card B = dim S"
+    using basis_exists[of S] by auto
+  then have "span B \<subseteq> S"
+    using span_mono[of B S] span_eq_iff[of S] assms by metis
+  then have "span B = S"
+    using B by auto
+  have "dim S = dim T"
+    using assms dim_subset[of S T] by auto
+  then have "T \<subseteq> span B"
+    using card_eq_dim[of B T] B finiteI_independent assms by auto
+  then show ?thesis
+    using assms \<open>span B = S\<close> by auto
+qed
+
+corollary dim_eq_span:
+  shows "\<lbrakk>S \<subseteq> T; dim T \<le> dim S\<rbrakk> \<Longrightarrow> span S = span T"
+  by (simp add: dim_span span_mono subspace_dim_equal subspace_span)
+
+lemma dim_psubset:
+  "span S \<subset> span T \<Longrightarrow> dim S < dim T"
+  by (metis (no_types, hide_lams) dim_span less_le not_le subspace_dim_equal subspace_span)
+
+lemma dim_eq_full:
+  shows "dim S = dimension \<longleftrightarrow> span S = UNIV"
+  by (metis dim_eq_span dim_subset_UNIV span_Basis span_span subset_UNIV
+        dim_UNIV dim_span dimension_def)
+
+lemma indep_card_eq_dim_span:
+  assumes "independent B"
+  shows "finite B \<and> card B = dim (span B)"
+  using dim_span_eq_card_independent[OF assms] finiteI_independent[OF assms] by auto
+
+text \<open>More general size bound lemmas.\<close>
+
+lemma independent_bound_general:
+  "independent S \<Longrightarrow> finite S \<and> card S \<le> dim S"
+  by (simp add: dim_eq_card_independent finiteI_independent)
+
+lemma independent_explicit:
+  shows "independent B \<longleftrightarrow> finite B \<and> (\<forall>c. (\<Sum>v\<in>B. c v *s v) = 0 \<longrightarrow> (\<forall>v \<in> B. c v = 0))"
+  apply (cases "finite B")
+   apply (force simp: dependent_finite)
+  using independent_bound_general
+  apply auto
+  done
+
+proposition dim_sums_Int:
+  assumes "subspace S" "subspace T"
+  shows "dim {x + y |x y. x \<in> S \<and> y \<in> T} + dim(S \<inter> T) = dim S + dim T"
+proof -
+  obtain B where B: "B \<subseteq> S \<inter> T" "S \<inter> T \<subseteq> span B"
+             and indB: "independent B"
+             and cardB: "card B = dim (S \<inter> T)"
+    using basis_exists by blast
+  then obtain C D where "B \<subseteq> C" "C \<subseteq> S" "independent C" "S \<subseteq> span C"
+                    and "B \<subseteq> D" "D \<subseteq> T" "independent D" "T \<subseteq> span D"
+    using maximal_independent_subset_extend
+    by (metis Int_subset_iff \<open>B \<subseteq> S \<inter> T\<close> indB)
+  then have "finite B" "finite C" "finite D"
+    by (simp_all add: finiteI_independent indB independent_bound_general)
+  have Beq: "B = C \<inter> D"
+    apply (rule sym)
+    apply (rule spanning_subset_independent)
+    using \<open>B \<subseteq> C\<close> \<open>B \<subseteq> D\<close> apply blast
+    apply (meson \<open>independent C\<close> independent_mono inf.cobounded1)
+    using B \<open>C \<subseteq> S\<close> \<open>D \<subseteq> T\<close> apply auto
+    done
+  then have Deq: "D = B \<union> (D - C)"
+    by blast
+  have CUD: "C \<union> D \<subseteq> {x + y |x y. x \<in> S \<and> y \<in> T}"
+    apply safe
+    apply (metis add.right_neutral subsetCE \<open>C \<subseteq> S\<close> \<open>subspace T\<close> set_eq_subset span_zero span_minimal)
+    apply (metis add.left_neutral subsetCE \<open>D \<subseteq> T\<close> \<open>subspace S\<close> set_eq_subset span_zero span_minimal)
+    done
+  have "a v = 0" if 0: "(\<Sum>v\<in>C. a v *s v) + (\<Sum>v\<in>D - C. a v *s v) = 0"
+                 and v: "v \<in> C \<union> (D-C)" for a v
+  proof -
+    have eq: "(\<Sum>v\<in>D - C. a v *s v) = - (\<Sum>v\<in>C. a v *s v)"
+      using that add_eq_0_iff by blast
+    have "(\<Sum>v\<in>D - C. a v *s v) \<in> S"
+      apply (subst eq)
+      apply (rule subspace_neg [OF \<open>subspace S\<close>])
+      apply (rule subspace_sum [OF \<open>subspace S\<close>])
+      by (meson subsetCE subspace_scale \<open>C \<subseteq> S\<close> \<open>subspace S\<close>)
+    moreover have "(\<Sum>v\<in>D - C. a v *s v) \<in> T"
+      apply (rule subspace_sum [OF \<open>subspace T\<close>])
+      by (meson DiffD1 \<open>D \<subseteq> T\<close> \<open>subspace T\<close> subset_eq subspace_def)
+    ultimately have "(\<Sum>v \<in> D-C. a v *s v) \<in> span B"
+      using B by blast
+    then obtain e where e: "(\<Sum>v\<in>B. e v *s v) = (\<Sum>v \<in> D-C. a v *s v)"
+      using span_finite [OF \<open>finite B\<close>] by force
+    have "\<And>c v. \<lbrakk>(\<Sum>v\<in>C. c v *s v) = 0; v \<in> C\<rbrakk> \<Longrightarrow> c v = 0"
+      using \<open>finite C\<close> \<open>independent C\<close> independentD by blast
+    define cc where "cc x = (if x \<in> B then a x + e x else a x)" for x
+    have [simp]: "C \<inter> B = B" "D \<inter> B = B" "C \<inter> - B = C-D" "B \<inter> (D - C) = {}"
+      using \<open>B \<subseteq> C\<close> \<open>B \<subseteq> D\<close> Beq by blast+
+    have f2: "(\<Sum>v\<in>C \<inter> D. e v *s v) = (\<Sum>v\<in>D - C. a v *s v)"
+      using Beq e by presburger
+    have f3: "(\<Sum>v\<in>C \<union> D. a v *s v) = (\<Sum>v\<in>C - D. a v *s v) + (\<Sum>v\<in>D - C. a v *s v) + (\<Sum>v\<in>C \<inter> D. a v *s v)"
+      using \<open>finite C\<close> \<open>finite D\<close> sum.union_diff2 by blast
+    have f4: "(\<Sum>v\<in>C \<union> (D - C). a v *s v) = (\<Sum>v\<in>C. a v *s v) + (\<Sum>v\<in>D - C. a v *s v)"
+      by (meson Diff_disjoint \<open>finite C\<close> \<open>finite D\<close> finite_Diff sum.union_disjoint)
+    have "(\<Sum>v\<in>C. cc v *s v) = 0"
+      using 0 f2 f3 f4
+      apply (simp add: cc_def Beq \<open>finite C\<close> sum.If_cases algebra_simps sum.distrib
+          if_distrib if_distribR)
+      apply (simp add: add.commute add.left_commute diff_eq)
+      done
+    then have "\<And>v. v \<in> C \<Longrightarrow> cc v = 0"
+      using independent_explicit \<open>independent C\<close> \<open>finite C\<close> by blast
+    then have C0: "\<And>v. v \<in> C - B \<Longrightarrow> a v = 0"
+      by (simp add: cc_def Beq) meson
+    then have [simp]: "(\<Sum>x\<in>C - B. a x *s x) = 0"
+      by simp
+    have "(\<Sum>x\<in>C. a x *s x) = (\<Sum>x\<in>B. a x *s x)"
+    proof -
+      have "C - D = C - B"
+        using Beq by blast
+      then show ?thesis
+        using Beq \<open>(\<Sum>x\<in>C - B. a x *s x) = 0\<close> f3 f4 by auto
+    qed
+    with 0 have Dcc0: "(\<Sum>v\<in>D. a v *s v) = 0"
+      apply (subst Deq)
+      by (simp add: \<open>finite B\<close> \<open>finite D\<close> sum_Un)
+    then have D0: "\<And>v. v \<in> D \<Longrightarrow> a v = 0"
+      using independent_explicit \<open>independent D\<close> \<open>finite D\<close> by blast
+    show ?thesis
+      using v C0 D0 Beq by blast
+  qed
+  then have "independent (C \<union> (D - C))"
+    unfolding independent_explicit
+    using independent_explicit
+    by (simp add: independent_explicit \<open>finite C\<close> \<open>finite D\<close> sum_Un del: Un_Diff_cancel)
+  then have indCUD: "independent (C \<union> D)" by simp
+  have "dim (S \<inter> T) = card B"
+    by (rule dim_unique [OF B indB refl])
+  moreover have "dim S = card C"
+    by (metis \<open>C \<subseteq> S\<close> \<open>independent C\<close> \<open>S \<subseteq> span C\<close> basis_card_eq_dim)
+  moreover have "dim T = card D"
+    by (metis \<open>D \<subseteq> T\<close> \<open>independent D\<close> \<open>T \<subseteq> span D\<close> basis_card_eq_dim)
+  moreover have "dim {x + y |x y. x \<in> S \<and> y \<in> T} = card(C \<union> D)"
+    apply (rule dim_unique [OF CUD _ indCUD refl], clarify)
+    apply (meson \<open>S \<subseteq> span C\<close> \<open>T \<subseteq> span D\<close> span_add span_superset span_minimal subsetCE subspace_span sup.bounded_iff)
+    done
+  ultimately show ?thesis
+    using \<open>B = C \<inter> D\<close> [symmetric]
+    by (simp add:  \<open>independent C\<close> \<open>independent D\<close> card_Un_Int finiteI_independent)
+qed
+
+lemma dependent_biggerset_general:
+  "(finite S \<Longrightarrow> card S > dim S) \<Longrightarrow> dependent S"
+  using independent_bound_general[of S] by (metis linorder_not_le)
+
+lemma subset_le_dim:
+  "S \<subseteq> span T \<Longrightarrow> dim S \<le> dim T"
+  by (metis dim_span dim_subset)
+
+lemma linear_inj_imp_surj:
+  assumes lf: "linear scale scale f"
+    and fi: "inj f"
+  shows "surj f"
+proof -
+  interpret lf: linear scale scale f by fact
+  from basis_exists[of UNIV] obtain B
+    where B: "B \<subseteq> UNIV" "independent B" "UNIV \<subseteq> span B" "card B = dim UNIV"
+    by blast
+  from B(4) have d: "dim UNIV = card B"
+    by simp
+  have th: "UNIV \<subseteq> span (f ` B)"
+    apply (rule card_ge_dim_independent)
+      apply blast
+    using B(2) inj_on_subset[OF fi]
+     apply (rule lf.independent_inj_on_image)
+     apply blast
+    apply (rule order_eq_refl)
+    apply (rule sym)
+    unfolding d
+    apply (rule card_image)
+    apply (rule subset_inj_on[OF fi])
+    apply blast
+    done
+  from th show ?thesis
+    unfolding lf.span_image surj_def
+    using B(3) by blast
+qed
+
+end
+
+locale finite_dimensional_vector_space_pair =
+  vs1: finite_dimensional_vector_space s1 B1 + vs2: finite_dimensional_vector_space s2 B2
+  for s1 :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b" (infixr "*a" 75)
+  and B1 :: "'b set"
+  and s2 :: "'a::field \<Rightarrow> 'c::ab_group_add \<Rightarrow> 'c" (infixr "*b" 75)
+  and B2 :: "'c set"
+begin
+
+sublocale vector_space_pair s1 s2 by unfold_locales
+
+lemma linear_surjective_imp_injective:
+  assumes lf: "linear s1 s2 f" and sf: "surj f" and eq: "vs2.dim UNIV = vs1.dim UNIV"
+    shows "inj f"
+proof -
+  interpret linear s1 s2 f by fact
+  have *: "card (f ` B1) \<le> vs2.dim UNIV"
+    using vs1.finite_Basis vs1.dim_eq_card[of B1 UNIV] sf
+    by (auto simp: vs1.span_Basis vs1.span_UNIV vs1.independent_Basis eq
+        simp del: vs2.dim_UNIV
+        intro!: card_image_le)
+  have indep_fB: "vs2.independent (f ` B1)"
+    using vs1.finite_Basis vs1.dim_eq_card[of B1 UNIV] sf *
+    by (intro vs2.card_le_dim_spanning[of "f ` B1" UNIV]) (auto simp: span_image vs1.span_Basis )
+  have "vs2.dim UNIV \<le> card (f ` B1)"
+    unfolding eq sf[symmetric] vs2.dim_span_eq_card_independent[symmetric, OF indep_fB]
+      vs2.dim_span
+    by (intro vs2.dim_mono) (auto simp: span_image vs1.span_Basis)
+  with * have "card (f ` B1) = vs2.dim UNIV" by auto
+  also have "... = card B1"
+    unfolding eq vs1.dim_UNIV ..
+  finally have "inj_on f B1"
+    by (subst inj_on_iff_eq_card[OF vs1.finite_Basis])
+  then show "inj f"
+    using inj_on_span_iff_independent_image[OF indep_fB] vs1.span_Basis by auto
+qed
+
+lemma linear_injective_imp_surjective:
+  assumes lf: "linear s1 s2 f" and sf: "inj f" and eq: "vs2.dim UNIV = vs1.dim UNIV"
+    shows "surj f"
+proof -
+  interpret linear s1 s2 f by fact
+  have *: False if b: "b \<notin> vs2.span (f ` B1)" for b
+  proof -
+    have *: "vs2.independent (f ` B1)"
+      using vs1.independent_Basis by (intro independent_injective_image inj_on_subset[OF sf]) auto
+    have **: "vs2.independent (insert b (f ` B1))"
+      using b * by (rule vs2.independent_insertI)
+
+    have "b \<notin> f ` B1" using vs2.span_base[of b "f ` B1"] b by auto
+    then have "Suc (card B1) = card (insert b (f ` B1))"
+      using sf[THEN inj_on_subset, of B1] by (subst card_insert) (auto intro: vs1.finite_Basis simp: card_image)
+    also have "\<dots> = vs2.dim (insert b (f ` B1))"
+      using vs2.dim_eq_card_independent[OF **] by simp
+    also have "vs2.dim (insert b (f ` B1)) \<le> vs2.dim B2"
+      by (rule vs2.dim_mono) (auto simp: vs2.span_Basis)
+    also have "\<dots> = card B1"
+      using vs1.dim_span[of B1] vs2.dim_span[of B2] unfolding vs1.span_Basis vs2.span_Basis eq 
+        vs1.dim_eq_card_independent[OF vs1.independent_Basis] by simp
+    finally show False by simp
+  qed
+  have "f ` UNIV = f ` vs1.span B1" unfolding vs1.span_Basis ..
+  also have "\<dots> = vs2.span (f ` B1)" unfolding span_image ..
+  also have "\<dots> = UNIV" using * by blast
+  finally show ?thesis .
+qed
+
+lemma linear_injective_isomorphism:
+  assumes lf: "linear s1 s2 f"
+    and fi: "inj f"
+    and dims: "vs2.dim UNIV = vs1.dim UNIV"
+  shows "\<exists>f'. linear s2 s1 f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)"
+proof -
+  show ?thesis
+    unfolding isomorphism_expand[symmetric]
+    using linear_exists_right_inverse_on[OF lf vs1.subspace_UNIV]
+      linear_exists_left_inverse_on[OF lf vs1.subspace_UNIV fi]
+    apply (auto simp: module_hom_iff_linear)
+    subgoal for f' f''
+      apply (rule exI[where x=f''])
+      using linear_injective_imp_surjective[OF lf fi dims]
+      apply auto
+      by (metis comp_apply eq_id_iff surj_def)
+    done
+qed
+
+lemma linear_surjective_isomorphism:
+  assumes lf: "linear s1 s2 f"
+    and sf: "surj f"
+    and dims: "vs2.dim UNIV = vs1.dim UNIV"
+  shows "\<exists>f'. linear s2 s1 f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)"
+proof -
+  show ?thesis
+    unfolding isomorphism_expand[symmetric]
+    using linear_exists_right_inverse_on[OF lf vs1.subspace_UNIV]
+      linear_exists_left_inverse_on[OF lf vs1.subspace_UNIV]
+    using linear_surjective_imp_injective[OF lf sf dims] sf
+    apply (auto simp: module_hom_iff_linear)
+    subgoal for f' f''
+      apply (rule exI[where x=f''])
+      apply auto
+      by (metis isomorphism_expand)
+    done
+qed
+
+lemma dim_image_eq:
+  assumes lf: "linear s1 s2 f"
+    and fi: "inj_on f (vs1.span S)"
+  shows "vs2.dim (f ` S) = vs1.dim S"
+proof -
+  interpret lf: linear by fact
+  obtain B where B: "B \<subseteq> S" "vs1.independent B" "S \<subseteq> vs1.span B" "card B = vs1.dim S"
+    using vs1.basis_exists[of S] by auto
+  then have "vs1.span S = vs1.span B"
+    using vs1.span_mono[of B S] vs1.span_mono[of S "vs1.span B"] vs1.span_span[of B] by auto
+  moreover have "card (f ` B) = card B"
+    using assms card_image[of f B] subset_inj_on[of f "vs1.span S" B] B vs1.span_superset by auto
+  moreover have "(f ` B) \<subseteq> (f ` S)"
+    using B by auto
+  ultimately show ?thesis
+    by (metis B(2) B(4) fi lf.dependent_inj_imageD lf.span_image vs2.dim_eq_card_independent vs2.dim_span)
+qed
+
+lemma basis_to_basis_subspace_isomorphism:
+  assumes s: "vs1.subspace S"
+    and t: "vs2.subspace T"
+    and d: "vs1.dim S = vs2.dim T"
+    and B: "B \<subseteq> S" "vs1.independent B" "S \<subseteq> vs1.span B" "card B = vs1.dim S"
+    and C: "C \<subseteq> T" "vs2.independent C" "T \<subseteq> vs2.span C" "card C = vs2.dim T"
+  shows "\<exists>f. linear s1 s2 f \<and> f ` B = C \<and> f ` S = T \<and> inj_on f S"
+proof -
+  from B have fB: "finite B"
+    by (simp add: vs1.finiteI_independent)
+  from C have fC: "finite C"
+    by (simp add: vs2.finiteI_independent)
+  from B(4) C(4) card_le_inj[of B C] d obtain f where
+    f: "f ` B \<subseteq> C" "inj_on f B" using \<open>finite B\<close> \<open>finite C\<close> by auto
+  from linear_independent_extend[OF B(2)] obtain g where
+    g: "linear s1 s2 g" "\<forall>x \<in> B. g x = f x" by blast
+  interpret g: linear s1 s2 g by fact
+  from inj_on_iff_eq_card[OF fB, of f] f(2)
+  have "card (f ` B) = card B" by simp
+  with B(4) C(4) have ceq: "card (f ` B) = card C" using d
+    by simp
+  have "g ` B = f ` B" using g(2)
+    by (auto simp add: image_iff)
+  also have "\<dots> = C" using card_subset_eq[OF fC f(1) ceq] .
+  finally have gBC: "g ` B = C" .
+  have gi: "inj_on g B" using f(2) g(2)
+    by (auto simp add: inj_on_def)
+  note g0 = linear_indep_image_lemma[OF g(1) fB, unfolded gBC, OF C(2) gi]
+  {
+    fix x y
+    assume x: "x \<in> S" and y: "y \<in> S" and gxy: "g x = g y"
+    from B(3) x y have x': "x \<in> vs1.span B" and y': "y \<in> vs1.span B"
+      by blast+
+    from gxy have th0: "g (x - y) = 0"
+      by (simp add: g.diff)
+    have th1: "x - y \<in> vs1.span B" using x' y'
+      by (metis vs1.span_diff)
+    have "x = y" using g0[OF th1 th0] by simp
+  }
+  then have giS: "inj_on g S" unfolding inj_on_def by blast
+  from vs1.span_subspace[OF B(1,3) s]
+  have "g ` S = vs2.span (g ` B)"
+    by (simp add: g.span_image)
+  also have "\<dots> = vs2.span C"
+    unfolding gBC ..
+  also have "\<dots> = T"
+    using vs2.span_subspace[OF C(1,3) t] .
+  finally have gS: "g ` S = T" .
+  from g(1) gS giS gBC show ?thesis
+    by blast
+qed
+
+lemma dim_image_le:
+  assumes lf: "linear s1 s2 f"
+  shows "vs2.dim (f ` S) \<le> vs1.dim (S)"
+proof -
+  from vs1.basis_exists[of S] obtain B where
+    B: "B \<subseteq> S" "vs1.independent B" "S \<subseteq> vs1.span B" "card B = vs1.dim S" by blast
+  from B have fB: "finite B" "card B = vs1.dim S"
+    using vs1.independent_bound_general by blast+
+  have "vs2.dim (f ` S) \<le> card (f ` B)"
+    apply (rule vs2.span_card_ge_dim)
+    using lf B fB
+      apply (auto simp add: module_hom.span_image module_hom.spans_image subset_image_iff
+        linear_iff_module_hom)
+    done
+  also have "\<dots> \<le> vs1.dim S"
+    using card_image_le[OF fB(1)] fB by simp
+  finally show ?thesis .
+qed
+
+end
+
+context finite_dimensional_vector_space begin
+
+lemma linear_surj_imp_inj:
+  assumes lf: "linear scale scale f"
+    and sf: "surj f"
+  shows "inj f"
+proof -
+  interpret finite_dimensional_vector_space_pair scale Basis scale Basis by unfold_locales
+  let ?U = "UNIV :: 'b set"
+  from basis_exists[of ?U] obtain B
+    where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" and d: "card B = dim ?U"
+    by blast
+  {
+    fix x
+    assume x: "x \<in> span B"
+    assume fx: "f x = 0"
+    from B(2) have fB: "finite B"
+      using finiteI_independent by auto
+    have fBi: "independent (f ` B)"
+      apply (rule card_le_dim_spanning[of "f ` B" ?U])
+      apply blast
+      using sf B(3)
+      unfolding linear_span_image[OF lf] surj_def subset_eq image_iff
+      apply blast
+      using fB apply blast
+      unfolding d[symmetric]
+      apply (rule card_image_le)
+      apply (rule fB)
+      done
+    have th0: "dim ?U \<le> card (f ` B)"
+      apply (rule span_card_ge_dim)
+      apply blast
+      unfolding linear_span_image[OF lf]
+      apply (rule subset_trans[where B = "f ` UNIV"])
+      using sf unfolding surj_def
+      apply blast
+      apply (rule image_mono)
+      apply (rule B(3))
+      apply (metis finite_imageI fB)
+      done
+    moreover have "card (f ` B) \<le> card B"
+      by (rule card_image_le, rule fB)
+    ultimately have th1: "card B = card (f ` B)"
+      unfolding d by arith
+    have fiB: "inj_on f B"
+      unfolding surjective_iff_injective_gen[OF fB finite_imageI[OF fB] th1 subset_refl, symmetric]
+      by blast
+    from linear_indep_image_lemma[OF lf fB fBi fiB x] fx
+    have "x = 0" by blast
+  }
+  then show ?thesis
+    unfolding linear_inj_on_iff_eq_0[OF lf subspace_UNIV]
+    using B(3)
+    by blast
+qed
+
+lemma linear_inverse_left:
+  assumes lf: "linear scale scale f"
+    and lf': "linear scale scale f'"
+  shows "f \<circ> f' = id \<longleftrightarrow> f' \<circ> f = id"
+proof -
+  {
+    fix f f':: "'b \<Rightarrow> 'b"
+    assume lf: "linear scale scale f" "linear scale scale f'"
+    assume f: "f \<circ> f' = id"
+    from f have sf: "surj f"
+      apply (auto simp add: o_def id_def surj_def)
+      apply metis
+      done
+    interpret finite_dimensional_vector_space_pair scale Basis scale Basis by unfold_locales
+    from linear_surjective_isomorphism[OF lf(1) sf] lf f
+    have "f' \<circ> f = id"
+      unfolding fun_eq_iff o_def id_def by metis
+  }
+  then show ?thesis
+    using lf lf' by metis
+qed
+
+lemma left_inverse_linear:
+  assumes lf: "linear scale scale f"
+    and gf: "g \<circ> f = id"
+  shows "linear scale scale g"
+proof -
+  from gf have fi: "inj f"
+    apply (auto simp add: inj_on_def o_def id_def fun_eq_iff)
+    apply metis
+    done
+  interpret finite_dimensional_vector_space_pair scale Basis scale Basis by unfold_locales
+  from linear_injective_isomorphism[OF lf fi]
+  obtain h :: "'b \<Rightarrow> 'b" where h: "linear scale scale h" "\<forall>x. h (f x) = x" "\<forall>x. f (h x) = x"
+    by blast
+  have "h = g"
+    apply (rule ext) using gf h(2,3)
+    apply (simp add: o_def id_def fun_eq_iff)
+    apply metis
+    done
+  with h(1) show ?thesis by blast
+qed
+
+lemma inj_linear_imp_inv_linear:
+  assumes "linear scale scale f" "inj f" shows "linear scale scale (inv f)"
+  using assms inj_iff left_inverse_linear by blast
+
+lemma right_inverse_linear:
+  assumes lf: "linear scale scale f"
+    and gf: "f \<circ> g = id"
+  shows "linear scale scale g"
+proof -
+  from gf have fi: "surj f"
+    by (auto simp add: surj_def o_def id_def) metis
+  interpret finite_dimensional_vector_space_pair scale Basis scale Basis by unfold_locales
+  from linear_surjective_isomorphism[OF lf fi]
+  obtain h:: "'b \<Rightarrow> 'b" where h: "linear scale scale h" "\<forall>x. h (f x) = x" "\<forall>x. f (h x) = x"
+    by blast
+  have "h = g"
+    apply (rule ext)
+    using gf h(2,3)
+    apply (simp add: o_def id_def fun_eq_iff)
+    apply metis
+    done
+  with h(1) show ?thesis by blast
+qed
+
+end
+
+context finite_dimensional_vector_space_pair begin
+
+lemma subspace_isomorphism:
+  assumes s: "vs1.subspace S"
+    and t: "vs2.subspace T"
+    and d: "vs1.dim S = vs2.dim T"
+  shows "\<exists>f. linear s1 s2 f \<and> f ` S = T \<and> inj_on f S"
+proof -
+  from vs1.basis_exists[of S] vs1.finiteI_independent
+  obtain B where B: "B \<subseteq> S" "vs1.independent B" "S \<subseteq> vs1.span B" "card B = vs1.dim S" and fB: "finite B"
+    by blast
+  from vs2.basis_exists[of T] vs2.finiteI_independent
+  obtain C where C: "C \<subseteq> T" "vs2.independent C" "T \<subseteq> vs2.span C" "card C = vs2.dim T" and fC: "finite C"
+    by blast
+  from B(4) C(4) card_le_inj[of B C] d
+  obtain f where f: "f ` B \<subseteq> C" "inj_on f B" using \<open>finite B\<close> \<open>finite C\<close>
+    by auto
+  from linear_independent_extend[OF B(2)]
+  obtain g where g: "linear s1 s2 g" "\<forall>x\<in> B. g x = f x"
+    by blast
+  interpret g: linear s1 s2 g by fact
+  from inj_on_iff_eq_card[OF fB, of f] f(2) have "card (f ` B) = card B"
+    by simp
+  with B(4) C(4) have ceq: "card (f ` B) = card C"
+    using d by simp
+  have "g ` B = f ` B"
+    using g(2) by (auto simp add: image_iff)
+  also have "\<dots> = C" using card_subset_eq[OF fC f(1) ceq] .
+  finally have gBC: "g ` B = C" .
+  have gi: "inj_on g B"
+    using f(2) g(2) by (auto simp add: inj_on_def)
+  note g0 = linear_indep_image_lemma[OF g(1) fB, unfolded gBC, OF C(2) gi]
+  {
+    fix x y
+    assume x: "x \<in> S" and y: "y \<in> S" and gxy: "g x = g y"
+    from B(3) x y have x': "x \<in> vs1.span B" and y': "y \<in> vs1.span B"
+      by blast+
+    from gxy have th0: "g (x - y) = 0"
+      by (simp add: linear_diff g)
+    have th1: "x - y \<in> vs1.span B"
+      using x' y' by (metis vs1.span_diff)
+    have "x = y"
+      using g0[OF th1 th0] by simp
+  }
+  then have giS: "inj_on g S"
+    unfolding inj_on_def by blast
+  from vs1.span_subspace[OF B(1,3) s] have "g ` S = vs2.span (g ` B)"
+    by (simp add: module_hom.span_image[OF g(1)[unfolded linear_iff_module_hom]])
+  also have "\<dots> = vs2.span C" unfolding gBC ..
+  also have "\<dots> = T" using vs2.span_subspace[OF C(1,3) t] .
+  finally have gS: "g ` S = T" .
+  from g(1) gS giS show ?thesis
+    by blast
+qed
+
+end
+
+hide_const (open) linear
+
+end
\ No newline at end of file