--- a/src/HOL/ex/predicate_compile.ML Tue Aug 04 08:34:56 2009 +0200
+++ b/src/HOL/ex/predicate_compile.ML Tue Aug 04 08:34:56 2009 +0200
@@ -44,9 +44,11 @@
val prepare_intrs: theory -> string list ->
(string * typ) list * int * string list * string list * (string * mode list) list *
(string * (term list * indprem list) list) list * (string * (int option list * int)) list
+ datatype tmode = Mode of mode * int list * tmode option list;
val infer_modes : theory -> (string * (int list option list * int list) list) list
-> (string * (int option list * int)) list -> string list
- -> (string * (term list * indprem list) list) list -> (string * mode list) list
+ -> (string * (term list * indprem list) list) list
+ -> (string * (mode * ((term list * (indprem * tmode) list) list)) list) list
val split_mode : int list -> term list -> (term list * term list)
end;
@@ -221,6 +223,7 @@
(* data structures *)
type mode = int list option list * int list; (*pmode FIMXE*)
+datatype tmode = Mode of mode * int list * tmode option list;
fun string_of_mode (iss, is) = space_implode " -> " (map
(fn NONE => "X"
@@ -547,8 +550,6 @@
fun cprods xss = foldr (map op :: o cprod) [[]] xss;
-datatype hmode = Mode of mode * int list * hmode option list; (*FIXME don't understand
- why there is another mode type tmode !?*)
(*TODO: cleanup function and put together with modes_of_term *)
@@ -664,46 +665,57 @@
val modes' = modes @ List.mapPartial
(fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
(param_vs ~~ iss);
- fun check_mode_prems vs [] = SOME vs
- | check_mode_prems vs ps = (case select_mode_prem thy modes' vs ps of
+ fun check_mode_prems acc_ps vs [] = SOME (acc_ps, vs)
+ | check_mode_prems acc_ps vs ps = (case select_mode_prem thy modes' vs ps of
NONE => NONE
- | SOME (x, _) => check_mode_prems
- (case x of Prem (us, _) => vs union terms_vs us | _ => vs)
- (filter_out (equal x) ps))
+ | SOME (p, SOME mode) => check_mode_prems ((p, mode) :: acc_ps)
+ (case p of Prem (us, _) => vs union terms_vs us | _ => vs)
+ (filter_out (equal p) ps))
val (in_ts, in_ts') = List.partition (is_constrt thy) (fst (split_mode is ts));
val in_vs = terms_vs in_ts;
val concl_vs = terms_vs ts
- val _ = Output.tracing ("ts :" ^ (commas (map (Syntax.string_of_term_global thy) ts)))
- val _ = ()
- val ret = forall is_eqT (map snd (duplicates (op =) (maps term_vTs in_ts))) andalso
- forall (is_eqT o fastype_of) in_ts' andalso
- (case check_mode_prems (param_vs union in_vs) ps of
- NONE => false
- | SOME vs => concl_vs subset vs)
in
- ret
+ if forall is_eqT (map snd (duplicates (op =) (maps term_vTs in_ts))) andalso
+ forall (is_eqT o fastype_of) in_ts' then
+ case check_mode_prems [] (param_vs union in_vs) ps of
+ NONE => NONE
+ | SOME (acc_ps, vs) => if concl_vs subset vs then SOME (ts, rev acc_ps) else NONE
+ else NONE
end;
fun check_modes_pred thy param_vs preds modes (p, ms) =
let val SOME rs = AList.lookup (op =) preds p
in (p, List.filter (fn m => case find_index
- (not o check_mode_clause thy param_vs modes m) rs of
+ (is_none o check_mode_clause thy param_vs modes m) rs of
~1 => true
- | i => (Output.tracing ("Clause " ^ string_of_int (i+1) ^ " of " ^
+ | i => (Output.tracing ("Clause " ^ string_of_int (i + 1) ^ " of " ^
p ^ " violates mode " ^ string_of_mode m); false)) ms)
end;
+fun get_modes_pred thy param_vs preds modes (p, ms) =
+ let
+ val SOME rs = AList.lookup (op =) preds p
+ in
+ (p, map (fn m => (m, map (the o check_mode_clause thy param_vs modes m) rs)) ms)
+ end;
+
fun fixp f (x : (string * mode list) list) =
let val y = f x
in if x = y then x else fixp f y end;
-fun infer_modes thy extra_modes arities param_vs preds = fixp (fn modes =>
- map (check_modes_pred thy param_vs preds (modes @ extra_modes)) modes)
- (map (fn (s, (ks, k)) => (s, cprod (cprods (map
- (fn NONE => [NONE]
- | SOME k' => map SOME (subsets 1 k')) ks),
- subsets 1 k))) arities);
-
+fun infer_modes thy extra_modes arities param_vs preds =
+ let
+ val modes =
+ fixp (fn modes =>
+ map (check_modes_pred thy param_vs preds (modes @ extra_modes)) modes)
+ (map (fn (s, (ks, k)) => (s, cprod (cprods (map
+ (fn NONE => [NONE]
+ | SOME k' => map SOME (subsets 1 k')) ks),
+ subsets 1 k))) arities)
+ in
+ map (get_modes_pred thy param_vs preds (modes @ extra_modes)) modes
+ end;
+
(* term construction *)
fun mk_v (names, vs) s T = (case AList.lookup (op =) vs s of
@@ -809,7 +821,7 @@
| compile_param _ _ _ _ = error "compile params"
-fun compile_expr thy compfuns modes (SOME (Mode (mode, is, ms)), t) =
+fun compile_expr thy compfuns modes ((Mode (mode, is, ms)), t) =
(case strip_comb t of
(Const (name, T), params) =>
if AList.defined op = modes name then
@@ -827,7 +839,7 @@
| compile_expr _ _ _ _ = error "not a valid inductive expression"
-fun compile_clause thy compfuns all_vs param_vs modes (iss, is) (ts, ps) inp =
+fun compile_clause thy compfuns all_vs param_vs modes (iss, is) inp (ts, moded_ps) =
let
val modes' = modes @ List.mapPartial
(fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
@@ -853,12 +865,9 @@
compile_match thy compfuns constr_vs (eqs @ eqs') out_ts'''
(mk_single compfuns (mk_tuple out_ts))
end
- | compile_prems out_ts vs names ps =
+ | compile_prems out_ts vs names ((p, mode as Mode ((_, is), _, _)) :: ps) =
let
val vs' = distinct (op =) (flat (vs :: map term_vs out_ts));
- val SOME (p, mode as SOME (Mode (_, js, _))) =
- select_mode_prem thy modes' vs' ps
- val ps' = filter_out (equal p) ps
val (out_ts', (names', eqs)) =
fold_map check_constrt out_ts (names, [])
val (out_ts'', (names'', constr_vs')) = fold_map distinct_v
@@ -866,23 +875,23 @@
val (compiled_clause, rest) = case p of
Prem (us, t) =>
let
- val (in_ts, out_ts''') = split_mode js us;
+ val (in_ts, out_ts''') = split_mode is us;
val u = list_comb (compile_expr thy compfuns modes (mode, t), in_ts)
- val rest = compile_prems out_ts''' vs' names'' ps'
+ val rest = compile_prems out_ts''' vs' names'' ps
in
(u, rest)
end
| Negprem (us, t) =>
let
- val (in_ts, out_ts''') = split_mode js us
+ val (in_ts, out_ts''') = split_mode is us
val u = list_comb (compile_expr thy compfuns modes (mode, t), in_ts)
- val rest = compile_prems out_ts''' vs' names'' ps'
+ val rest = compile_prems out_ts''' vs' names'' ps
in
(mk_not compfuns u, rest)
end
| Sidecond t =>
let
- val rest = compile_prems [] vs' names'' ps';
+ val rest = compile_prems [] vs' names'' ps;
in
(mk_if compfuns t, rest)
end
@@ -890,12 +899,12 @@
compile_match thy compfuns constr_vs' eqs out_ts''
(mk_bind compfuns (compiled_clause, rest))
end
- val prem_t = compile_prems in_ts' param_vs all_vs' ps;
+ val prem_t = compile_prems in_ts' param_vs all_vs' moded_ps;
in
mk_bind compfuns (mk_single compfuns inp, prem_t)
end
-fun compile_pred thy compfuns all_vs param_vs modes s T cls mode =
+fun compile_pred thy compfuns all_vs param_vs modes s T mode moded_cls =
let
val Ts = binder_types T;
val (Ts1, Ts2) = chop (length param_vs) Ts;
@@ -905,8 +914,8 @@
(map (fn i => "x" ^ string_of_int i) (snd mode));
val xs = map2 (fn s => fn T => Free (s, T)) xnames Us1;
val cl_ts =
- map (fn cl => compile_clause thy compfuns
- all_vs param_vs modes mode cl (mk_tuple xs)) cls;
+ map (compile_clause thy compfuns
+ all_vs param_vs modes mode (mk_tuple xs)) moded_cls;
in
HOLogic.mk_Trueprop (HOLogic.mk_eq
(list_comb (mk_predfun_of thy compfuns (s, T) mode,
@@ -914,11 +923,21 @@
foldr1 (mk_sup compfuns) cl_ts))
end;
-fun compile_preds thy compfuns all_vs param_vs modes preds =
- map (fn (s, (T, cls)) =>
- map (compile_pred thy compfuns all_vs param_vs modes s T cls)
- ((the o AList.lookup (op =) modes) s)) preds;
+fun map_preds_modes f preds_modes_table =
+ map (fn (pred, modes) =>
+ (pred, map (fn (mode, value) => (mode, f pred mode value)) modes)) preds_modes_table
+fun join_preds_modes table1 table2 =
+ map_preds_modes (fn pred => fn mode => fn value =>
+ (value, the (AList.lookup (op =) (the (AList.lookup (op =) table2 pred)) mode))) table1
+
+fun maps_modes preds_modes_table =
+ map (fn (pred, modes) =>
+ (pred, map (fn (mode, value) => value) modes)) preds_modes_table
+
+fun compile_preds thy compfuns all_vs param_vs modes preds moded_clauses =
+ map_preds_modes (fn pred => compile_pred thy compfuns all_vs param_vs modes pred
+ (the (AList.lookup (op =) preds pred))) moded_clauses
(* special setup for simpset *)
val HOL_basic_ss' = HOL_basic_ss setSolver
@@ -1076,9 +1095,9 @@
(* MAJOR FIXME: prove_params should be simple
- different form of introrule for parameters ? *)
-fun prove_param thy modes (NONE, t) =
+fun prove_param thy (NONE, t) =
all_tac
-| prove_param thy modes (m as SOME (Mode (mode, is, ms)), t) =
+| prove_param thy (m as SOME (Mode (mode, is, ms)), t) =
REPEAT_DETERM (etac @{thm thin_rl} 1)
THEN REPEAT_DETERM (rtac @{thm ext} 1)
THEN (rtac @{thm iffI} 1)
@@ -1105,21 +1124,20 @@
THEN (REPEAT_DETERM (atac 1))
end
*)
-fun prove_expr thy modes (SOME (Mode (mode, is, ms)), t, us) (premposition : int) =
- (case strip_comb t of
- (Const (name, T), args) =>
- if AList.defined op = modes name then (let
- val introrule = predfun_intro_of thy name mode
- (*val (in_args, out_args) = split_mode is us
- val (pred, rargs) = strip_comb (HOLogic.dest_Trueprop
- (hd (Logic.strip_imp_prems (prop_of introrule))))
- val nparams = length ms (* get_nparams thy (fst (dest_Const pred)) *)
- val (_, args) = chop nparams rargs
- val subst = map (pairself (cterm_of thy)) (args ~~ us)
- val inst_introrule = Drule.cterm_instantiate subst introrule*)
- (* the next line is old and probably wrong *)
- val (args1, args2) = chop (length ms) args
- in
+fun prove_expr thy (Mode (mode, is, ms), t, us) (premposition : int) =
+ case strip_comb t of
+ (Const (name, T), args) =>
+ let
+ val introrule = predfun_intro_of thy name mode
+ (*val (in_args, out_args) = split_mode is us
+ val (pred, rargs) = strip_comb (HOLogic.dest_Trueprop
+ (hd (Logic.strip_imp_prems (prop_of introrule))))
+ val nparams = length ms (* get_nparams thy (fst (dest_Const pred)) *)
+ val (_, args) = chop nparams rargs
+ val subst = map (pairself (cterm_of thy)) (args ~~ us)
+ val inst_introrule = Drule.cterm_instantiate subst introrule*)
+ val (args1, args2) = chop (length ms) args
+ in
rtac @{thm bindI} 1
THEN print_tac "before intro rule:"
(* for the right assumption in first position *)
@@ -1129,12 +1147,10 @@
(* work with parameter arguments *)
THEN (atac 1)
THEN (print_tac "parameter goal")
- THEN (EVERY (map (prove_param thy modes) (ms ~~ args1)))
- THEN (REPEAT_DETERM (atac 1)) end)
- else error "Prove expr if case not implemented"
- | _ => rtac @{thm bindI} 1
- THEN atac 1)
- | prove_expr _ _ _ _ = error "Prove expr not implemented"
+ THEN (EVERY (map (prove_param thy) (ms ~~ args1)))
+ THEN (REPEAT_DETERM (atac 1))
+ end
+ | _ => rtac @{thm bindI} 1 THEN atac 1
fun SOLVED tac st = FILTER (fn st' => nprems_of st' = nprems_of st - 1) tac st;
@@ -1178,101 +1194,85 @@
(* need better control here! *)
end
-fun prove_clause thy nargs all_vs param_vs modes (iss, is) (ts, ps) = let
- val modes' = modes @ List.mapPartial
- (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
- (param_vs ~~ iss);
- fun check_constrt ((names, eqs), t) =
- if is_constrt thy t then ((names, eqs), t) else
- let
- val s = Name.variant names "x";
- val v = Free (s, fastype_of t)
- in ((s::names, HOLogic.mk_eq (v, t)::eqs), v) end;
-
- val (in_ts, clause_out_ts) = split_mode is ts;
- val ((all_vs', eqs), in_ts') =
- (*FIXME*) Library.foldl_map check_constrt ((all_vs, []), in_ts);
- fun prove_prems out_ts vs [] =
- (prove_match thy out_ts)
- THEN asm_simp_tac HOL_basic_ss' 1
- THEN print_tac "before the last rule of singleI:"
- THEN (rtac (if null clause_out_ts then @{thm singleI_unit} else @{thm singleI}) 1)
- | prove_prems out_ts vs rps =
- let
- val vs' = distinct (op =) (flat (vs :: map term_vs out_ts));
- val SOME (p, mode as SOME (Mode ((iss, js), _, param_modes))) =
- select_mode_prem thy modes' vs' rps;
- val premposition = (find_index (equal p) ps) + nargs
- val rps' = filter_out (equal p) rps;
- val rest_tac = (case p of Prem (us, t) =>
- let
- val (in_ts, out_ts''') = split_mode js us
- val rec_tac = prove_prems out_ts''' vs' rps'
- in
- print_tac "before clause:"
- THEN asm_simp_tac HOL_basic_ss 1
- THEN print_tac "before prove_expr:"
- THEN prove_expr thy modes (mode, t, us) premposition
- THEN print_tac "after prove_expr:"
- THEN rec_tac
- end
- | Negprem (us, t) =>
- let
- val (in_ts, out_ts''') = split_mode js us
- val rec_tac = prove_prems out_ts''' vs' rps'
- val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
- val (_, params) = strip_comb t
- in
- rtac @{thm bindI} 1
- THEN (if (is_some name) then
- simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, js)]) 1
- THEN rtac @{thm not_predI} 1
- (* FIXME: work with parameter arguments *)
- THEN (EVERY (map (prove_param thy modes) (param_modes ~~ params)))
- else
- rtac @{thm not_predI'} 1)
- THEN (REPEAT_DETERM (atac 1))
- THEN rec_tac
- end
- | Sidecond t =>
- rtac @{thm bindI} 1
- THEN rtac @{thm if_predI} 1
- THEN print_tac "before sidecond:"
- THEN prove_sidecond thy modes t
- THEN print_tac "after sidecond:"
- THEN prove_prems [] vs' rps')
- in (prove_match thy out_ts)
- THEN rest_tac
- end;
- val prems_tac = prove_prems in_ts' param_vs ps
-in
- rtac @{thm bindI} 1
- THEN rtac @{thm singleI} 1
- THEN prems_tac
-end;
+fun prove_clause thy nargs modes (iss, is) (_, clauses) (ts, moded_ps) =
+ let
+ val (in_ts, clause_out_ts) = split_mode is ts;
+ fun prove_prems out_ts [] =
+ (prove_match thy out_ts)
+ THEN asm_simp_tac HOL_basic_ss' 1
+ THEN (rtac (if null clause_out_ts then @{thm singleI_unit} else @{thm singleI}) 1)
+ | prove_prems out_ts ((p, mode as Mode ((iss, is), _, param_modes)) :: ps) =
+ let
+ val premposition = (find_index (equal p) clauses) + nargs
+ val rest_tac = (case p of Prem (us, t) =>
+ let
+ val (_, out_ts''') = split_mode is us
+ val rec_tac = prove_prems out_ts''' ps
+ in
+ print_tac "before clause:"
+ THEN asm_simp_tac HOL_basic_ss 1
+ THEN print_tac "before prove_expr:"
+ THEN prove_expr thy (mode, t, us) premposition
+ THEN print_tac "after prove_expr:"
+ THEN rec_tac
+ end
+ | Negprem (us, t) =>
+ let
+ val (_, out_ts''') = split_mode is us
+ val rec_tac = prove_prems out_ts''' ps
+ val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
+ val (_, params) = strip_comb t
+ in
+ rtac @{thm bindI} 1
+ THEN (if (is_some name) then
+ simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, is)]) 1
+ THEN rtac @{thm not_predI} 1
+ (* FIXME: work with parameter arguments *)
+ THEN (EVERY (map (prove_param thy) (param_modes ~~ params)))
+ else
+ rtac @{thm not_predI'} 1)
+ THEN (REPEAT_DETERM (atac 1))
+ THEN rec_tac
+ end
+ | Sidecond t =>
+ rtac @{thm bindI} 1
+ THEN rtac @{thm if_predI} 1
+ THEN print_tac "before sidecond:"
+ THEN prove_sidecond thy modes t
+ THEN print_tac "after sidecond:"
+ THEN prove_prems [] ps)
+ in (prove_match thy out_ts)
+ THEN rest_tac
+ end;
+ val prems_tac = prove_prems in_ts moded_ps
+ in
+ rtac @{thm bindI} 1
+ THEN rtac @{thm singleI} 1
+ THEN prems_tac
+ end;
fun select_sup 1 1 = []
| select_sup _ 1 = [rtac @{thm supI1}]
| select_sup n i = (rtac @{thm supI2})::(select_sup (n - 1) (i - 1));
-fun prove_one_direction thy all_vs param_vs modes clauses ((pred, T), mode) = let
-(* val ind_result = Inductive.the_inductive (ProofContext.init thy) pred
- val index = find_index (fn s => s = pred) (#names (fst ind_result))
- val (_, T) = dest_Const (nth (#preds (snd ind_result)) index) *)
- val nargs = length (binder_types T) - nparams_of thy pred
- val pred_case_rule = singleton (ind_set_codegen_preproc thy)
- (preprocess_elim thy nargs (the_elim_of thy pred))
- (* FIXME preprocessor |> Simplifier.full_simplify (HOL_basic_ss addsimps [@{thm Predicate.memb_code}])*)
-in
- REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"}))
- THEN etac (predfun_elim_of thy pred mode) 1
- THEN etac pred_case_rule 1
- THEN (EVERY (map
- (fn i => EVERY' (select_sup (length clauses) i) i)
- (1 upto (length clauses))))
- THEN (EVERY (map (prove_clause thy nargs all_vs param_vs modes mode) clauses))
- THEN print_tac "proved one direction"
-end;
+fun prove_one_direction thy clauses preds modes pred mode moded_clauses =
+ let
+ val T = the (AList.lookup (op =) preds pred)
+ val nargs = length (binder_types T) - nparams_of thy pred
+ (* FIXME: preprocessing! *)
+ val pred_case_rule = singleton (ind_set_codegen_preproc thy)
+ (preprocess_elim thy nargs (the_elim_of thy pred))
+ (* FIXME preprocessor |> Simplifier.full_simplify (HOL_basic_ss addsimps [@{thm Predicate.memb_code}])*)
+ in
+ REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"}))
+ THEN etac (predfun_elim_of thy pred mode) 1
+ THEN etac pred_case_rule 1
+ THEN (EVERY (map
+ (fn i => EVERY' (select_sup (length moded_clauses) i) i)
+ (1 upto (length moded_clauses))))
+ THEN (EVERY (map2 (prove_clause thy nargs modes mode) clauses moded_clauses))
+ THEN print_tac "proved one direction"
+ end;
(** Proof in the other direction **)
@@ -1303,9 +1303,10 @@
(* VERY LARGE SIMILIRATIY to function prove_param
-- join both functions
*)
-
-fun prove_param2 thy modes (NONE, t) = all_tac
- | prove_param2 thy modes (m as SOME (Mode (mode, is, ms)), t) = let
+(* TODO: remove function *)
+(*
+fun prove_param2 thy (NONE, t) = all_tac
+ | prove_param2 thy (m as SOME (Mode (mode, is, ms)), t) = let
val (f, args) = strip_comb t
val (params, _) = chop (length ms) args
val f_tac = case f of
@@ -1317,30 +1318,27 @@
print_tac "before simplification in prove_args:"
THEN f_tac
THEN print_tac "after simplification in prove_args"
- THEN (EVERY (map (prove_param2 thy modes) (ms ~~ params)))
+ THEN (EVERY (map (prove_param2 thy) (ms ~~ params)))
end
+*)
-
-fun prove_expr2 thy modes (SOME (Mode (mode, is, ms)), t) =
+fun prove_expr2 thy (Mode (mode, is, ms), t) =
(case strip_comb t of
(Const (name, T), args) =>
- if AList.defined op = modes name then
- etac @{thm bindE} 1
- THEN (REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"})))
- THEN print_tac "prove_expr2-before"
- THEN (debug_tac (Syntax.string_of_term_global thy
- (prop_of (predfun_elim_of thy name mode))))
- THEN (etac (predfun_elim_of thy name mode) 1)
- THEN print_tac "prove_expr2"
- (* TODO -- FIXME: replace remove_last_goal*)
- (* THEN (EVERY (replicate (length args) (remove_last_goal thy))) *)
- THEN (EVERY (map (prove_param thy modes) (ms ~~ args)))
- THEN print_tac "finished prove_expr2"
-
- else error "Prove expr2 if case not implemented"
+ etac @{thm bindE} 1
+ THEN (REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"})))
+ THEN print_tac "prove_expr2-before"
+ THEN (debug_tac (Syntax.string_of_term_global thy
+ (prop_of (predfun_elim_of thy name mode))))
+ THEN (etac (predfun_elim_of thy name mode) 1)
+ THEN print_tac "prove_expr2"
+ THEN (EVERY (map (prove_param thy) (ms ~~ args)))
+ THEN print_tac "finished prove_expr2"
| _ => etac @{thm bindE} 1)
- | prove_expr2 _ _ _ = error "Prove expr2 not implemented"
-
+
+(* FIXME: what is this for? *)
+(* replace defined by has_mode thy pred *)
+(* TODO: rewrite function *)
fun prove_sidecond2 thy modes t = let
fun preds_of t nameTs = case strip_comb t of
(f as Const (name, T), args) =>
@@ -1358,130 +1356,113 @@
THEN print_tac "after sidecond2 simplification"
end
-fun prove_clause2 thy all_vs param_vs modes (iss, is) (ts, ps) pred i = let
- val modes' = modes @ List.mapPartial
- (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
- (param_vs ~~ iss);
- fun check_constrt ((names, eqs), t) =
- if is_constrt thy t then ((names, eqs), t) else
- let
- val s = Name.variant names "x";
- val v = Free (s, fastype_of t)
- in ((s::names, HOLogic.mk_eq (v, t)::eqs), v) end;
- val pred_intro_rule = nth (intros_of thy pred) (i - 1)
- |> preprocess_intro thy
- |> (fn thm => hd (ind_set_codegen_preproc thy [thm]))
- (* FIXME preprocess |> Simplifier.full_simplify (HOL_basic_ss addsimps [@ {thm Predicate.memb_code}]) *)
- val (in_ts, clause_out_ts) = split_mode is ts;
- val ((all_vs', eqs), in_ts') =
- (*FIXME*) Library.foldl_map check_constrt ((all_vs, []), in_ts);
- fun prove_prems2 out_ts vs [] =
- print_tac "before prove_match2 - last call:"
- THEN prove_match2 thy out_ts
- THEN print_tac "after prove_match2 - last call:"
- THEN (etac @{thm singleE} 1)
- THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
- THEN (asm_full_simp_tac HOL_basic_ss' 1)
- THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
- THEN (asm_full_simp_tac HOL_basic_ss' 1)
- THEN SOLVED (print_tac "state before applying intro rule:"
+fun prove_clause2 thy modes pred (iss, is) (ts, ps) i =
+ let
+ val pred_intro_rule = nth (intros_of thy pred) (i - 1)
+ |> preprocess_intro thy
+ |> (fn thm => hd (ind_set_codegen_preproc thy [thm]))
+ (* FIXME preprocess |> Simplifier.full_simplify (HOL_basic_ss addsimps [@ {thm Predicate.memb_code}]) *)
+ val (in_ts, clause_out_ts) = split_mode is ts;
+ fun prove_prems2 out_ts [] =
+ print_tac "before prove_match2 - last call:"
+ THEN prove_match2 thy out_ts
+ THEN print_tac "after prove_match2 - last call:"
+ THEN (etac @{thm singleE} 1)
+ THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
+ THEN (asm_full_simp_tac HOL_basic_ss' 1)
+ THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
+ THEN (asm_full_simp_tac HOL_basic_ss' 1)
+ THEN SOLVED (print_tac "state before applying intro rule:"
THEN (rtac pred_intro_rule 1)
(* How to handle equality correctly? *)
THEN (print_tac "state before assumption matching")
THEN (REPEAT (atac 1 ORELSE
(CHANGED (asm_full_simp_tac HOL_basic_ss' 1)
THEN print_tac "state after simp_tac:"))))
- | prove_prems2 out_ts vs ps = let
- val vs' = distinct (op =) (flat (vs :: map term_vs out_ts));
- val SOME (p, mode as SOME (Mode ((iss, js), _, param_modes))) =
- select_mode_prem thy modes' vs' ps;
- val ps' = filter_out (equal p) ps;
- val rest_tac = (case p of Prem (us, t) =>
+ | prove_prems2 out_ts ((p, mode as Mode ((iss, is), _, param_modes)) :: ps) =
+ let
+ val rest_tac = (case p of
+ Prem (us, t) =>
let
- val (in_ts, out_ts''') = split_mode js us
- val rec_tac = prove_prems2 out_ts''' vs' ps'
+ val (_, out_ts''') = split_mode is us
+ val rec_tac = prove_prems2 out_ts''' ps
in
- (prove_expr2 thy modes (mode, t)) THEN rec_tac
+ (prove_expr2 thy (mode, t)) THEN rec_tac
end
| Negprem (us, t) =>
let
- val (in_ts, out_ts''') = split_mode js us
- val rec_tac = prove_prems2 out_ts''' vs' ps'
+ val (_, out_ts''') = split_mode is us
+ val rec_tac = prove_prems2 out_ts''' ps
val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
val (_, params) = strip_comb t
in
print_tac "before neg prem 2"
THEN etac @{thm bindE} 1
THEN (if is_some name then
- full_simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, js)]) 1
+ full_simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, is)]) 1
THEN etac @{thm not_predE} 1
- THEN (EVERY (map (prove_param thy modes) (param_modes ~~ params)))
+ THEN (EVERY (map (prove_param thy) (param_modes ~~ params)))
else
etac @{thm not_predE'} 1)
THEN rec_tac
end
| Sidecond t =>
- etac @{thm bindE} 1
- THEN etac @{thm if_predE} 1
- THEN prove_sidecond2 thy modes t
- THEN prove_prems2 [] vs' ps')
- in print_tac "before prove_match2:"
- THEN prove_match2 thy out_ts
- THEN print_tac "after prove_match2:"
- THEN rest_tac
- end;
- val prems_tac = prove_prems2 in_ts' param_vs ps
-in
- print_tac "starting prove_clause2"
- THEN etac @{thm bindE} 1
- THEN (etac @{thm singleE'} 1)
- THEN (TRY (etac @{thm Pair_inject} 1))
- THEN print_tac "after singleE':"
- THEN prems_tac
-end;
+ etac @{thm bindE} 1
+ THEN etac @{thm if_predE} 1
+ THEN prove_sidecond2 thy modes t
+ THEN prove_prems2 [] ps)
+ in print_tac "before prove_match2:"
+ THEN prove_match2 thy out_ts
+ THEN print_tac "after prove_match2:"
+ THEN rest_tac
+ end;
+ val prems_tac = prove_prems2 in_ts ps
+ in
+ print_tac "starting prove_clause2"
+ THEN etac @{thm bindE} 1
+ THEN (etac @{thm singleE'} 1)
+ THEN (TRY (etac @{thm Pair_inject} 1))
+ THEN print_tac "after singleE':"
+ THEN prems_tac
+ end;
-fun prove_other_direction thy all_vs param_vs modes clauses (pred, mode) = let
- fun prove_clause (clause, i) =
- (if i < length clauses then etac @{thm supE} 1 else all_tac)
- THEN (prove_clause2 thy all_vs param_vs modes mode clause pred i)
-in
- (DETERM (TRY (rtac @{thm unit.induct} 1)))
- THEN (REPEAT_DETERM (CHANGED (rewtac @{thm split_paired_all})))
- THEN (rtac (predfun_intro_of thy pred mode) 1)
- THEN (REPEAT_DETERM (rtac @{thm refl} 2))
- THEN (EVERY (map prove_clause (clauses ~~ (1 upto (length clauses)))))
-end;
+fun prove_other_direction thy modes pred mode moded_clauses =
+ let
+ fun prove_clause clause i =
+ (if i < length moded_clauses then etac @{thm supE} 1 else all_tac)
+ THEN (prove_clause2 thy modes pred mode clause i)
+ in
+ (DETERM (TRY (rtac @{thm unit.induct} 1)))
+ THEN (REPEAT_DETERM (CHANGED (rewtac @{thm split_paired_all})))
+ THEN (rtac (predfun_intro_of thy pred mode) 1)
+ THEN (REPEAT_DETERM (rtac @{thm refl} 2))
+ THEN (EVERY (map2 prove_clause moded_clauses (1 upto (length moded_clauses))))
+ end;
(** proof procedure **)
-fun prove_pred thy all_vs param_vs modes clauses (((pred, T), mode), t) = let
- val ctxt = ProofContext.init thy
- val clauses' = the (AList.lookup (op =) clauses pred)
-in
- Goal.prove ctxt (Term.fold_aterms (fn Free (x, _) => insert (op =) x | _ => I) t []) [] t
- (if !do_proofs then
- (fn _ =>
- rtac @{thm pred_iffI} 1
- THEN prove_one_direction thy all_vs param_vs modes clauses' ((pred, T), mode)
- THEN print_tac "proved one direction"
- THEN prove_other_direction thy all_vs param_vs modes clauses' (pred, mode)
- THEN print_tac "proved other direction")
- else (fn _ => mycheat_tac thy 1))
-end;
+fun prove_pred thy clauses preds modes pred mode (moded_clauses, compiled_term) =
+ let
+ val ctxt = ProofContext.init thy
+ val clauses = the (AList.lookup (op =) clauses pred)
+ in
+ Goal.prove ctxt (Term.add_free_names compiled_term []) [] compiled_term
+ (if !do_proofs then
+ (fn _ =>
+ rtac @{thm pred_iffI} 1
+ THEN prove_one_direction thy clauses preds modes pred mode moded_clauses
+ THEN print_tac "proved one direction"
+ THEN prove_other_direction thy modes pred mode moded_clauses
+ THEN print_tac "proved other direction")
+ else (fn _ => mycheat_tac thy 1))
+ end;
-fun prove_preds thy all_vs param_vs modes clauses pmts =
- map (prove_pred thy all_vs param_vs modes clauses) pmts
+fun prove_preds thy clauses preds modes =
+ map_preds_modes (prove_pred thy clauses preds modes)
-fun rpred_prove_preds thy pmts =
- let
- fun prove_pred (((pred, T), mode), t) =
- let
- val _ = Output.tracing ("prove_preds:" ^ Syntax.string_of_term_global thy t)
- in SkipProof.make_thm thy t end
- in
- map prove_pred pmts
- end
-
+fun rpred_prove_preds thy =
+ map_preds_modes (fn pred => fn mode => fn t => SkipProof.make_thm thy t)
+
fun prepare_intrs thy prednames =
let
val intrs = maps (intros_of thy) prednames
@@ -1526,17 +1507,6 @@
val (clauses, arities) = fold add_clause intrs ([], []);
in (preds, nparams, all_vs, param_vs, extra_modes, clauses, arities) end;
-fun arrange kvs =
- let
- fun add (key, value) table =
- AList.update op = (key, these (AList.lookup op = table key) @ [value]) table
- in fold add kvs [] end;
-
-fun add_generators_to_clauses thy all_vs clauses =
- let
- val _ = Output.tracing ("all_vs:" ^ commas all_vs)
- in [clauses] end;
-
(* main function *)
fun add_equations_of rpred prednames thy =
@@ -1545,43 +1515,29 @@
val (preds, nparams, all_vs, param_vs, extra_modes, clauses, arities) =
prepare_intrs thy prednames
val _ = tracing "Infering modes..."
- (*
- val clauses_with_generators = add_generators_to_clauses thy all_vs clauses
- val modess = map (infer_modes thy extra_modes arities param_vs) clauses_with_generators
- fun print_modess (clauses, modes) =
- let
- val _ = print_clausess thy clauses
- val _ = print_modes modes
- in
- ()
- end;
- val _ = map print_modess (clauses_with_generators ~~ modess)
- *)
- val modes = infer_modes thy extra_modes arities param_vs clauses
- val _ = print_modes modes
+ val moded_clauses = infer_modes thy extra_modes arities param_vs clauses
+ val modes = map (fn (p, mps) => (p, map fst mps)) moded_clauses
val _ = tracing "Defining executable functions..."
val thy' =
(if rpred then
fold (rpred_create_definitions preds nparams) modes thy
else fold (create_definitions preds nparams) modes thy)
|> Theory.checkpoint
- val clauses' = map (fn (s, cls) => (s, (the (AList.lookup (op =) preds s), cls))) clauses
val _ = tracing "Compiling equations..."
val compfuns = if rpred then RPredCompFuns.compfuns else PredicateCompFuns.compfuns
- val ts = compile_preds thy' compfuns all_vs param_vs (extra_modes @ modes) clauses'
- val _ = map (Output.tracing o (Syntax.string_of_term_global thy')) (flat ts)
- val pred_mode =
- maps (fn (s, (T, _)) => map (pair (s, T)) ((the o AList.lookup (op =) modes) s)) clauses'
+ val compiled_terms =
+ compile_preds thy' compfuns all_vs param_vs (extra_modes @ modes) preds moded_clauses
val _ = tracing "Proving equations..."
val result_thms =
if rpred then
- rpred_prove_preds thy' (pred_mode ~~ (flat ts))
+ rpred_prove_preds thy' compiled_terms
else
- prove_preds thy' all_vs param_vs (extra_modes @ modes) clauses (pred_mode ~~ (flat ts))
+ prove_preds thy' clauses preds (extra_modes @ modes)
+ (join_preds_modes moded_clauses compiled_terms)
val thy'' = fold (fn (name, result_thms) => fn thy => snd (PureThy.add_thmss
[((Binding.qualify true (Long_Name.base_name name) (Binding.name "equation"), result_thms),
[Attrib.attribute_i thy Code.add_default_eqn_attrib])] thy))
- (arrange ((map (fn ((name, _), _) => name) pred_mode) ~~ result_thms)) thy'
+ (maps_modes result_thms) thy'
|> Theory.checkpoint
in
thy''
@@ -1620,7 +1576,7 @@
val scc = strong_conn_of (PredData.get thy') [name]
val thy'' = fold_rev
(fn preds => fn thy =>
- if forall (null o modes_of thy) preds then add_equations_of true preds thy else thy)
+ if forall (null o modes_of thy) preds then add_equations_of false preds thy else thy)
scc thy' |> Theory.checkpoint
in thy'' end
@@ -1717,7 +1673,8 @@
| [m] => m
| m :: _ :: _ => (warning ("Multiple modes possible for comprehension "
^ Syntax.string_of_term_global thy t_compr); m);
- val t_eval = list_comb (compile_expr thy PredicateCompFuns.compfuns (all_modes_of thy) (SOME m, list_comb (pred, params)),
+ val t_eval = list_comb (compile_expr thy PredicateCompFuns.compfuns (all_modes_of thy)
+ (m, list_comb (pred, params)),
inargs)
in t_eval end;