src/HOL/Tools/Sledgehammer/clausifier.ML
changeset 39722 4a4086908382
parent 39717 e9bec0b43449
parent 39721 76a61ca09d5d
child 39726 ba01ecc2252a
--- a/src/HOL/Tools/Sledgehammer/clausifier.ML	Mon Sep 27 11:12:08 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,254 +0,0 @@
-(*  Title:      HOL/Tools/Sledgehammer/clausifier.ML
-    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
-    Author:     Jasmin Blanchette, TU Muenchen
-
-Transformation of axiom rules (elim/intro/etc) into CNF forms.
-*)
-
-signature CLAUSIFIER =
-sig
-  val extensionalize_theorem : thm -> thm
-  val introduce_combinators_in_cterm : cterm -> thm
-  val introduce_combinators_in_theorem : thm -> thm
-  val to_definitional_cnf_with_quantifiers : theory -> thm -> thm
-  val cnf_axiom : theory -> thm -> thm list
-end;
-
-structure Clausifier : CLAUSIFIER =
-struct
-
-(**** Transformation of Elimination Rules into First-Order Formulas****)
-
-val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
-val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
-
-(* Converts an elim-rule into an equivalent theorem that does not have the
-   predicate variable. Leaves other theorems unchanged. We simply instantiate
-   the conclusion variable to False. (Cf. "transform_elim_term" in
-   "Sledgehammer_Util".) *)
-fun transform_elim_theorem th =
-  case concl_of th of    (*conclusion variable*)
-       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
-           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
-    | v as Var(_, @{typ prop}) =>
-           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
-    | _ => th
-
-
-(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
-
-fun mk_skolem t =
-  let val T = fastype_of t in
-    Const (@{const_name skolem}, T --> T) $ t
-  end
-
-fun beta_eta_under_lambdas (Abs (s, T, t')) =
-    Abs (s, T, beta_eta_under_lambdas t')
-  | beta_eta_under_lambdas t = Envir.beta_eta_contract t
-
-(*Traverse a theorem, accumulating Skolem function definitions.*)
-fun assume_skolem_funs th =
-  let
-    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (_, T, p))) rhss =
-        (*Existential: declare a Skolem function, then insert into body and continue*)
-        let
-          val args = OldTerm.term_frees body
-          (* Forms a lambda-abstraction over the formal parameters *)
-          val rhs =
-            list_abs_free (map dest_Free args,
-                           HOLogic.choice_const T $ beta_eta_under_lambdas body)
-            |> mk_skolem
-          val comb = list_comb (rhs, args)
-        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
-      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
-        (*Universal quant: insert a free variable into body and continue*)
-        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
-        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
-      | dec_sko (@{const HOL.conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
-      | dec_sko (@{const HOL.disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
-      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
-      | dec_sko _ rhss = rhss
-  in  dec_sko (prop_of th) []  end;
-
-
-(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
-
-val fun_cong_all = @{thm fun_eq_iff [THEN iffD1]}
-
-(* Removes the lambdas from an equation of the form "t = (%x. u)".
-   (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
-fun extensionalize_theorem th =
-  case prop_of th of
-    _ $ (Const (@{const_name HOL.eq}, Type (_, [Type (@{type_name fun}, _), _]))
-         $ _ $ Abs _) => extensionalize_theorem (th RS fun_cong_all)
-  | _ => th
-
-fun is_quasi_lambda_free (Const (@{const_name skolem}, _) $ _) = true
-  | is_quasi_lambda_free (t1 $ t2) =
-    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
-  | is_quasi_lambda_free (Abs _) = false
-  | is_quasi_lambda_free _ = true
-
-val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
-val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
-val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
-
-(* FIXME: Requires more use of cterm constructors. *)
-fun abstract ct =
-  let
-      val thy = theory_of_cterm ct
-      val Abs(x,_,body) = term_of ct
-      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
-      val cxT = ctyp_of thy xT
-      val cbodyT = ctyp_of thy bodyT
-      fun makeK () =
-        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
-                     @{thm abs_K}
-  in
-      case body of
-          Const _ => makeK()
-        | Free _ => makeK()
-        | Var _ => makeK()  (*though Var isn't expected*)
-        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
-        | rator$rand =>
-            if loose_bvar1 (rator,0) then (*C or S*)
-               if loose_bvar1 (rand,0) then (*S*)
-                 let val crator = cterm_of thy (Abs(x,xT,rator))
-                     val crand = cterm_of thy (Abs(x,xT,rand))
-                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
-                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
-                 in
-                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
-                 end
-               else (*C*)
-                 let val crator = cterm_of thy (Abs(x,xT,rator))
-                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
-                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
-                 in
-                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
-                 end
-            else if loose_bvar1 (rand,0) then (*B or eta*)
-               if rand = Bound 0 then Thm.eta_conversion ct
-               else (*B*)
-                 let val crand = cterm_of thy (Abs(x,xT,rand))
-                     val crator = cterm_of thy rator
-                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
-                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
-                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
-            else makeK()
-        | _ => raise Fail "abstract: Bad term"
-  end;
-
-(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
-fun introduce_combinators_in_cterm ct =
-  if is_quasi_lambda_free (term_of ct) then
-    Thm.reflexive ct
-  else case term_of ct of
-    Abs _ =>
-    let
-      val (cv, cta) = Thm.dest_abs NONE ct
-      val (v, _) = dest_Free (term_of cv)
-      val u_th = introduce_combinators_in_cterm cta
-      val cu = Thm.rhs_of u_th
-      val comb_eq = abstract (Thm.cabs cv cu)
-    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
-  | _ $ _ =>
-    let val (ct1, ct2) = Thm.dest_comb ct in
-        Thm.combination (introduce_combinators_in_cterm ct1)
-                        (introduce_combinators_in_cterm ct2)
-    end
-
-fun introduce_combinators_in_theorem th =
-  if is_quasi_lambda_free (prop_of th) then
-    th
-  else
-    let
-      val th = Drule.eta_contraction_rule th
-      val eqth = introduce_combinators_in_cterm (cprop_of th)
-    in Thm.equal_elim eqth th end
-    handle THM (msg, _, _) =>
-           (warning ("Error in the combinator translation of " ^
-                     Display.string_of_thm_without_context th ^
-                     "\nException message: " ^ msg ^ ".");
-            (* A type variable of sort "{}" will make abstraction fail. *)
-            TrueI)
-
-(*cterms are used throughout for efficiency*)
-val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
-
-(*Given an abstraction over n variables, replace the bound variables by free
-  ones. Return the body, along with the list of free variables.*)
-fun c_variant_abs_multi (ct0, vars) =
-      let val (cv,ct) = Thm.dest_abs NONE ct0
-      in  c_variant_abs_multi (ct, cv::vars)  end
-      handle CTERM _ => (ct0, rev vars);
-
-val skolem_def_raw = @{thms skolem_def_raw}
-
-(* Given the definition of a Skolem function, return a theorem to replace
-   an existential formula by a use of that function.
-   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
-fun skolem_theorem_of_def thy rhs0 =
-  let
-    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
-    val rhs' = rhs |> Thm.dest_comb |> snd
-    val (ch, frees) = c_variant_abs_multi (rhs', [])
-    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
-    val T =
-      case hilbert of
-        Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
-      | _ => raise TERM ("skolem_theorem_of_def: expected \"Eps\"", [hilbert])
-    val cex = cterm_of thy (HOLogic.exists_const T)
-    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
-    val conc =
-      Drule.list_comb (rhs, frees)
-      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
-    fun tacf [prem] =
-      rewrite_goals_tac skolem_def_raw
-      THEN rtac ((prem |> rewrite_rule skolem_def_raw) RS @{thm someI_ex}) 1
-  in
-    Goal.prove_internal [ex_tm] conc tacf
-    |> forall_intr_list frees
-    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
-    |> Thm.varifyT_global
-  end
-
-(* Converts an Isabelle theorem (intro, elim or simp format, even higher-order)
-   into NNF. *)
-fun to_nnf th ctxt0 =
-  let
-    val th1 = th |> transform_elim_theorem |> zero_var_indexes
-    val ((_, [th2]), ctxt) = Variable.import true [th1] ctxt0
-    val th3 = th2 |> Conv.fconv_rule Object_Logic.atomize
-                  |> extensionalize_theorem
-                  |> Meson.make_nnf ctxt
-  in (th3, ctxt) end
-
-fun to_definitional_cnf_with_quantifiers thy th =
-  let
-    val eqth = cnf.make_cnfx_thm thy (HOLogic.dest_Trueprop (prop_of th))
-    val eqth = eqth RS @{thm eq_reflection}
-    val eqth = eqth RS @{thm TruepropI}
-  in Thm.equal_elim eqth th end
-
-(* Convert a theorem to CNF, with Skolem functions as additional premises. *)
-fun cnf_axiom thy th =
-  let
-    val ctxt0 = Variable.global_thm_context th
-    val (nnf_th, ctxt) = to_nnf th ctxt0
-    fun aux th =
-      Meson.make_cnf (map (skolem_theorem_of_def thy) (assume_skolem_funs th))
-                     th ctxt
-    val (cnf_ths, ctxt) =
-      aux nnf_th
-      |> (fn ([], _) => aux (to_definitional_cnf_with_quantifiers thy nnf_th)
-           | p => p)
-  in
-    cnf_ths |> map introduce_combinators_in_theorem
-            |> Variable.export ctxt ctxt0
-            |> Meson.finish_cnf
-            |> map Thm.close_derivation
-  end
-  handle THM _ => []
-
-end;