--- a/src/HOL/Analysis/Homotopy.thy Fri Apr 18 14:19:41 2025 +0200
+++ b/src/HOL/Analysis/Homotopy.thy Tue Apr 22 17:35:02 2025 +0100
@@ -5222,13 +5222,12 @@
next
case False
show ?thesis
- proof (rule continuous_transform_within [where f=g and d = "norm(x-a)"])
- have "\<exists>d>0. \<forall>x'\<in>cball a r.
- dist x' x < d \<longrightarrow> dist (g x') (g x) < e" if "e>0" for e
+ proof (rule continuous_transform_within [where f=g and \<delta> = "norm(x-a)"])
+ have "\<exists>d>0. \<forall>x'\<in>cball a r. dist x' x < d \<longrightarrow> dist (g x') (g x) < e"
+ if "e>0" for e
proof -
obtain d where "d > 0"
- and d: "\<And>x'. \<lbrakk>dist x' a \<le> r; x' \<noteq> a; dist x' x < d\<rbrakk> \<Longrightarrow>
- dist (g x') (g x) < e"
+ and d: "\<And>y. \<lbrakk>dist y a \<le> r; y \<noteq> a; dist y x < d\<rbrakk> \<Longrightarrow> dist (g y) (g x) < e"
using contg False x \<open>e>0\<close>
unfolding continuous_on_iff by (fastforce simp: dist_commute intro: that)
show ?thesis