doc-src/TutorialI/Overview/Isar.thy
changeset 13249 4b3de6370184
parent 12815 1f073030b97a
child 16417 9bc16273c2d4
--- a/doc-src/TutorialI/Overview/Isar.thy	Wed Jun 26 10:26:46 2002 +0200
+++ b/doc-src/TutorialI/Overview/Isar.thy	Wed Jun 26 11:07:14 2002 +0200
@@ -10,7 +10,7 @@
 proof
   show "lfp ?F \<subseteq> ?toA"
   by (blast intro!: lfp_lowerbound intro: rtrancl_trans)
-
+next
   show "?toA \<subseteq> lfp ?F"
   proof
     fix s assume "s \<in> ?toA"
@@ -20,6 +20,7 @@
     proof (rule converse_rtrancl_induct)
       from tA have "t \<in> ?F (lfp ?F)" by blast
       with mono_ef show "t \<in> lfp ?F" ..
+    next
       fix s s' assume "(s,s') \<in> M" and "(s',t) \<in> M\<^sup>*"
                   and "s' \<in> lfp ?F"
       then have "s \<in> ?F (lfp ?F)" by blast