src/HOLCF/FOCUS/Fstream.ML
changeset 11350 4c55b020d6ee
child 11355 778c369559d9
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/FOCUS/Fstream.ML	Thu May 31 16:53:00 2001 +0200
@@ -0,0 +1,238 @@
+(*  Title: 	HOLCF/FOCUS/Fstream.ML
+    ID:         $ $
+    Author: 	David von Oheimb, TU Muenchen
+    License:    GPL (GNU GENERAL PUBLIC LICENSE)
+*)
+
+Goal "a = Def d \\<Longrightarrow> a\\<sqsubseteq>b \\<Longrightarrow> b = Def d";
+by (rtac (flat_eq RS iffD1 RS sym) 1);
+by (rtac Def_not_UU 1);
+by (dtac antisym_less_inverse 1);
+by (eatac (conjunct2 RS trans_less) 1 1);
+qed "Def_maximal";
+
+
+section "fscons";
+
+Goalw [fscons_def] "a~>s = Def a && s";
+by (Simp_tac 1);
+qed "fscons_def2";
+
+qed_goal "fstream_exhaust" thy "x = UU |  (? a y. x = a~> y)" (fn _ => [
+	simp_tac (simpset() addsimps [fscons_def2]) 1,
+	cut_facts_tac [stream.exhaust] 1,
+	fast_tac (claset() addDs [not_Undef_is_Def RS iffD1]) 1]);
+
+qed_goal "fstream_cases" thy "[| x = UU ==> P; !!a y. x = a~> y ==> P |] ==> P" 
+ (fn prems => [
+	cut_facts_tac [fstream_exhaust] 1,
+	etac disjE 1,
+	 eresolve_tac prems 1,
+	REPEAT(etac exE 1),
+	eresolve_tac prems 1]);
+
+fun fstream_case_tac s i = res_inst_tac [("x",s)] fstream_cases i
+			  THEN hyp_subst_tac i THEN hyp_subst_tac (i+1);
+
+qed_goal "fstream_exhaust_eq" thy "x ~= UU = (? a y. x = a~> y)" (fn _ => [
+	simp_tac(simpset() addsimps [fscons_def2,stream_exhaust_eq]) 1,
+	fast_tac (claset() addDs [not_Undef_is_Def RS iffD1] addEs [DefE]) 1]);
+
+
+qed_goal "fscons_not_empty" thy "a~> s ~= <>" (fn _ => [
+	stac fscons_def2 1,
+        Simp_tac 1]);
+Addsimps[fscons_not_empty];
+
+
+qed_goal "fscons_inject" thy "(a~> s = b~> t) = (a = b &  s = t)" (fn _ => [
+	simp_tac (HOL_ss addsimps [fscons_def2]) 1,
+	stac (hd lift.inject RS sym) 1, (*2*back();*)
+        Simp_tac 1]);
+Addsimps[fscons_inject];
+
+qed_goal "fstream_prefix" thy "a~> s << t ==> ? tt. t = a~> tt &  s << tt" (fn prems =>[
+	cut_facts_tac prems 1,
+	stream_case_tac "t" 1,
+	 cut_facts_tac [fscons_not_empty] 1,
+	 fast_tac (HOL_cs addDs [eq_UU_iff RS iffD2]) 1,
+	asm_full_simp_tac (HOL_ss addsimps [fscons_def2]) 1,
+	dtac stream_flat_prefix 1,
+	rtac Def_not_UU 1,
+	fast_tac HOL_cs 1]);
+
+qed_goal "fstream_prefix'" thy
+	"x << a~> z = (x = <> |  (? y. x = a~> y &  y << z))" (fn _ => [
+	simp_tac(HOL_ss addsimps [fscons_def2, Def_not_UU RS stream_prefix'])1,
+	Step_tac 1,
+	 ALLGOALS(etac swap),
+	 fast_tac (HOL_cs addIs [refl_less] addEs [DefE]) 2,
+	rtac Lift_cases 1,
+	 contr_tac 1,
+	Step_tac 1,
+	dtac (Def_inject_less_eq RS iffD1) 1,
+	Fast_tac 1]);
+Addsimps[fstream_prefix'];
+
+(* ------------------------------------------------------------------------- *)
+
+section "ft & rt";
+
+bind_thm("ft_empty",hd stream.sel_rews);
+qed_goalw "ft_fscons" thy [fscons_def] "ft\\<cdot>(m~> s) = Def m" (fn _ => [
+	(Simp_tac 1)]);
+Addsimps[ft_fscons];
+
+bind_thm("rt_empty",hd (tl stream.sel_rews));
+qed_goalw "rt_fscons" thy [fscons_def] "rt\\<cdot>(m~> s) = s" (fn _ => [
+	(Simp_tac 1)]);
+Addsimps[rt_fscons];
+
+qed_goalw "ft_eq" thy [fscons_def] "(ft\\<cdot>s = Def a) = (? t. s = a~> t)" (K [
+	Simp_tac 1,
+	Safe_tac,
+	 etac subst 1,
+	 rtac exI 1,
+	 rtac (surjectiv_scons RS sym) 1,
+	Simp_tac 1]);
+Addsimps[ft_eq];
+
+Goal "(d\\<leadsto>y = x) = (ft\\<cdot>x = Def d & rt\\<cdot>x = y)";
+by Auto_tac;
+qed "surjective_fscons_lemma";
+Goal "ft\\<cdot>x = Def d \\<Longrightarrow> d\\<leadsto>rt\\<cdot>x = x";
+by (asm_simp_tac (simpset() addsimps [surjective_fscons_lemma]) 1);
+qed "surjective_fscons";
+
+
+(* ------------------------------------------------------------------------- *)
+
+section "take";
+
+qed_goalw "fstream_take_Suc" thy [fscons_def]
+	"stream_take (Suc n)\\<cdot>(a~> s) = a~> stream_take n\\<cdot>s" (K [
+	Simp_tac 1]);
+Addsimps[fstream_take_Suc];
+
+
+(* ------------------------------------------------------------------------- *)
+
+section "slen";
+	
+(*bind_thm("slen_empty", slen_empty);*)
+
+qed_goalw "slen_fscons" thy [fscons_def] "#(m~> s) = iSuc (#s)" (fn _ => [
+	(Simp_tac 1)]);
+
+qed_goal "slen_fscons_eq" thy 
+	"Fin (Suc n) < #x = (? a y. x = a~> y & Fin n < #y)" (fn _ => [
+	simp_tac (HOL_ss addsimps [fscons_def2, slen_scons_eq]) 1,
+	fast_tac (HOL_cs addDs [not_Undef_is_Def RS iffD1] addEs [DefE]) 1]);
+
+qed_goal "slen_fscons_eq_rev" thy 
+	"#x < Fin (Suc (Suc n)) = (!a y. x ~= a~> y | #y < Fin (Suc n))" (K [
+	simp_tac (HOL_ss addsimps [fscons_def2, slen_scons_eq_rev]) 1,
+	step_tac (HOL_cs addSEs [DefE]) 1,
+	step_tac (HOL_cs addSEs [DefE]) 1,
+	step_tac (HOL_cs addSEs [DefE]) 1,
+	step_tac (HOL_cs addSEs [DefE]) 1,
+	step_tac (HOL_cs addSEs [DefE]) 1,
+	step_tac (HOL_cs addSEs [DefE]) 1,
+	etac swap 1,
+	fast_tac (HOL_cs addDs [not_Undef_is_Def RS iffD1] addEs [DefE]) 1]);
+
+qed_goal "slen_fscons_less_eq" thy 
+	"#(a~> y) < Fin (Suc (Suc n)) = (#y < Fin (Suc n))" (fn _ => [
+	stac slen_fscons_eq_rev 1,
+	fast_tac (HOL_cs addSDs [fscons_inject RS iffD1]) 1]);
+
+
+(* ------------------------------------------------------------------------- *)
+
+section "induction";
+
+qed_goal "fstream_ind" thy 
+	"[| adm P; P <>; !!a s. P s ==> P (a~> s) |] ==> P x" (fn prems => [
+	cut_facts_tac prems 1,
+	etac stream.ind 1,
+	 atac 1,
+	fast_tac (HOL_cs addDs [not_Undef_is_Def RS iffD1] 
+			 addEs (tl (tl prems) RL [fscons_def2 RS subst])) 1]);
+
+qed_goal "fstream_ind2" thy 
+  "[| adm P; P UU; !!a. P (a~> UU); !!a b s. P s ==> P (a~> b~> s) |] ==> P x" (fn prems => [
+	cut_facts_tac prems 1,
+	etac stream_ind2 1,
+	  atac 1,
+	fast_tac (HOL_cs addDs [not_Undef_is_Def RS iffD1] 
+			 addIs ([hd(tl(tl prems))]RL[fscons_def2 RS subst]))1,
+	fast_tac (HOL_cs addDs [not_Undef_is_Def RS iffD1] 
+			 addEs [hd(tl(tl(tl prems))RL[fscons_def2 RS subst]
+						 RL[fscons_def2 RS subst])])1]);
+
+
+(* ------------------------------------------------------------------------- *)
+
+section "fsfilter";
+
+qed_goalw "fsfilter_empty" thy [fsfilter_def] "A(C)UU = UU" (fn _ => [
+	rtac sfilter_empty 1]);
+
+qed_goalw "fsfilter_fscons" thy [fsfilter_def] 
+	"A(C)x~> xs = (if x:A then x~> (A(C)xs) else A(C)xs)" (fn _ => [
+	simp_tac (simpset() addsimps [fscons_def2,sfilter_scons,If_and_if]) 1]);
+
+qed_goal "fsfilter_emptys" thy "{}(C)x = UU" (fn _ => [
+	res_inst_tac [("x","x")] fstream_ind 1,
+	  resolve_tac adm_lemmas 1,
+	   cont_tacR 1,
+	 rtac fsfilter_empty 1,
+	asm_simp_tac (simpset()addsimps [fsfilter_fscons]) 1]);
+
+qed_goal "fsfilter_insert" thy "(insert a A)(C)a~> x = a~> ((insert a A)(C)x)" (fn _=> [
+	simp_tac (simpset() addsimps [fsfilter_fscons]) 1]);
+
+qed_goal "fsfilter_single_in" thy "{a}(C)a~> x = a~> ({a}(C)x)" (fn _=> [
+	rtac fsfilter_insert 1]);
+
+qed_goal "fsfilter_single_out" thy "b ~= a ==> {a}(C)b~> x = ({a}(C)x)" (fn prems => [
+	cut_facts_tac prems 1,
+	asm_simp_tac (simpset() addsimps[fsfilter_fscons]) 1]);
+
+Goal "\\<lbrakk>chain Y; lub (range Y) = a\\<leadsto>s\\<rbrakk> \\<Longrightarrow> \\<exists>j t. Y j = a\\<leadsto>t";
+by (case_tac "max_in_chain i Y" 1);
+by  (datac (lub_finch1 RS thelubI RS sym) 1 1);
+by  (Force_tac 1);
+by (rewtac max_in_chain_def);
+by Auto_tac;
+by (fatac chain_mono3 1 1);
+by (res_inst_tac [("x","Y j")] fstream_cases 1);
+by  (Force_tac 1);
+by (dres_inst_tac [("x","j")] is_ub_thelub 1);
+by (Force_tac 1);
+qed "fstream_lub_lemma1";
+
+Goal "\\<lbrakk>chain Y; lub (range Y) = a\\<leadsto>s\\<rbrakk> \\<Longrightarrow> (\\<exists>j t. Y j = a\\<leadsto>t) & (\\<exists>X. chain X & (!i. ? j. Y j = a\\<leadsto>X i) & lub (range X) = s)";
+by (fatac fstream_lub_lemma1 1 1);
+by (Clarsimp_tac 1);
+by (res_inst_tac [("x","%i. rt\\<cdot>(Y(i+j))")] exI 1);
+by (rtac conjI 1);
+by  (etac (chain_shift RS chain_monofun) 1);
+by Safe_tac;
+by  (dres_inst_tac [("x","j"),("y","i+j")] chain_mono3 1);
+by   (Simp_tac 1);
+by  (Asm_full_simp_tac 1);
+by  (res_inst_tac [("x","i+j")] exI 1);
+by  (dtac fstream_prefix 1);
+by  (Clarsimp_tac 1);
+by  (stac (contlub_cfun RS sym) 1);
+by   (rtac chainI 1);
+by   (Fast_tac 1);
+by  (etac chain_shift 1);
+by (stac (lub_const RS thelubI) 1);
+by (stac lub_range_shift 1);
+by  (atac 1);
+by (Asm_simp_tac 1);
+qed "fstream_lub_lemma";
+
+