--- a/src/HOL/Finite_Set.thy Mon Dec 07 10:23:50 2015 +0100
+++ b/src/HOL/Finite_Set.thy Mon Dec 07 10:38:04 2015 +0100
@@ -27,7 +27,7 @@
declare [[simproc del: finite_Collect]]
lemma finite_induct [case_names empty insert, induct set: finite]:
- -- \<open>Discharging @{text "x \<notin> F"} entails extra work.\<close>
+ \<comment> \<open>Discharging \<open>x \<notin> F\<close> entails extra work.\<close>
assumes "finite F"
assumes "P {}"
and insert: "\<And>x F. finite F \<Longrightarrow> x \<notin> F \<Longrightarrow> P F \<Longrightarrow> P (insert x F)"
@@ -61,7 +61,7 @@
subsubsection \<open>Choice principles\<close>
-lemma ex_new_if_finite: -- "does not depend on def of finite at all"
+lemma ex_new_if_finite: \<comment> "does not depend on def of finite at all"
assumes "\<not> finite (UNIV :: 'a set)" and "finite A"
shows "\<exists>a::'a. a \<notin> A"
proof -
@@ -574,7 +574,7 @@
qed
-subsection \<open>Class @{text finite}\<close>
+subsection \<open>Class \<open>finite\<close>\<close>
class finite =
assumes finite_UNIV: "finite (UNIV :: 'a set)"
@@ -624,8 +624,8 @@
subsection \<open>A basic fold functional for finite sets\<close>
text \<open>The intended behaviour is
-@{text "fold f z {x\<^sub>1, ..., x\<^sub>n} = f x\<^sub>1 (\<dots> (f x\<^sub>n z)\<dots>)"}
-if @{text f} is ``left-commutative'':
+\<open>fold f z {x\<^sub>1, ..., x\<^sub>n} = f x\<^sub>1 (\<dots> (f x\<^sub>n z)\<dots>)\<close>
+if \<open>f\<close> is ``left-commutative'':
\<close>
locale comp_fun_commute =
@@ -656,7 +656,7 @@
text\<open>A tempting alternative for the definiens is
@{term "if finite A then THE y. fold_graph f z A y else e"}.
It allows the removal of finiteness assumptions from the theorems
-@{text fold_comm}, @{text fold_reindex} and @{text fold_distrib}.
+\<open>fold_comm\<close>, \<open>fold_reindex\<close> and \<open>fold_distrib\<close>.
The proofs become ugly. It is not worth the effort. (???)\<close>
lemma finite_imp_fold_graph: "finite A \<Longrightarrow> \<exists>x. fold_graph f z A x"
@@ -723,7 +723,7 @@
with assms show ?thesis by (simp add: fold_def)
qed
-text \<open>The base case for @{text fold}:\<close>
+text \<open>The base case for \<open>fold\<close>:\<close>
lemma (in -) fold_infinite [simp]:
assumes "\<not> finite A"
@@ -747,7 +747,7 @@
qed
declare (in -) empty_fold_graphE [rule del] fold_graph.intros [rule del]
- -- \<open>No more proofs involve these.\<close>
+ \<comment> \<open>No more proofs involve these.\<close>
lemma fold_fun_left_comm:
"finite A \<Longrightarrow> f x (fold f z A) = fold f (f x z) A"
@@ -884,7 +884,7 @@
end
-subsubsection \<open>Liftings to @{text comp_fun_commute} etc.\<close>
+subsubsection \<open>Liftings to \<open>comp_fun_commute\<close> etc.\<close>
lemma (in comp_fun_commute) comp_comp_fun_commute:
"comp_fun_commute (f \<circ> g)"