--- a/src/HOL/Set_Interval.thy Mon Dec 07 10:23:50 2015 +0100
+++ b/src/HOL/Set_Interval.thy Mon Dec 07 10:38:04 2015 +0100
@@ -798,15 +798,15 @@
subsubsection \<open>Intervals and numerals\<close>
-lemma lessThan_nat_numeral: --\<open>Evaluation for specific numerals\<close>
+lemma lessThan_nat_numeral: \<comment>\<open>Evaluation for specific numerals\<close>
"lessThan (numeral k :: nat) = insert (pred_numeral k) (lessThan (pred_numeral k))"
by (simp add: numeral_eq_Suc lessThan_Suc)
-lemma atMost_nat_numeral: --\<open>Evaluation for specific numerals\<close>
+lemma atMost_nat_numeral: \<comment>\<open>Evaluation for specific numerals\<close>
"atMost (numeral k :: nat) = insert (numeral k) (atMost (pred_numeral k))"
by (simp add: numeral_eq_Suc atMost_Suc)
-lemma atLeastLessThan_nat_numeral: --\<open>Evaluation for specific numerals\<close>
+lemma atLeastLessThan_nat_numeral: \<comment>\<open>Evaluation for specific numerals\<close>
"atLeastLessThan m (numeral k :: nat) =
(if m \<le> (pred_numeral k) then insert (pred_numeral k) (atLeastLessThan m (pred_numeral k))
else {})"
@@ -1468,12 +1468,12 @@
the middle column shows the new (default) syntax, and the right column
shows a special syntax. The latter is only meaningful for latex output
and has to be activated explicitly by setting the print mode to
-@{text latex_sum} (e.g.\ via @{text "mode = latex_sum"} in
+\<open>latex_sum\<close> (e.g.\ via \<open>mode = latex_sum\<close> in
antiquotations). It is not the default \LaTeX\ output because it only
works well with italic-style formulae, not tt-style.
Note that for uniformity on @{typ nat} it is better to use
-@{term"\<Sum>x::nat=0..<n. e"} rather than @{text"\<Sum>x<n. e"}: @{text setsum} may
+@{term"\<Sum>x::nat=0..<n. e"} rather than \<open>\<Sum>x<n. e\<close>: \<open>setsum\<close> may
not provide all lemmas available for @{term"{m..<n}"} also in the
special form for @{term"{..<n}"}.\<close>
@@ -1697,7 +1697,7 @@
finally show ?case .
qed simp
-corollary power_diff_sumr2: --\<open>@{text COMPLEX_POLYFUN} in HOL Light\<close>
+corollary power_diff_sumr2: \<comment>\<open>\<open>COMPLEX_POLYFUN\<close> in HOL Light\<close>
fixes x :: "'a::{comm_ring,monoid_mult}"
shows "x^n - y^n = (x - y) * (\<Sum>i<n. y^(n - Suc i) * x^i)"
using diff_power_eq_setsum[of x "n - 1" y]