src/HOL/Wellfounded.thy
changeset 26748 4d51ddd6aa5c
child 26803 0af0f674845d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Wellfounded.thy	Fri Apr 25 15:30:33 2008 +0200
@@ -0,0 +1,919 @@
+(*  ID:         $Id$
+    Author:     Tobias Nipkow
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Konrad Slind, Alexander Krauss
+    Copyright   1992-2008  University of Cambridge and TU Muenchen
+*)
+
+header {*Well-founded Recursion*}
+
+theory Wellfounded
+imports Finite_Set Nat
+uses ("Tools/function_package/size.ML")
+begin
+
+inductive
+  wfrec_rel :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => 'a => 'b => bool"
+  for R :: "('a * 'a) set"
+  and F :: "('a => 'b) => 'a => 'b"
+where
+  wfrecI: "ALL z. (z, x) : R --> wfrec_rel R F z (g z) ==>
+            wfrec_rel R F x (F g x)"
+
+constdefs
+  wf         :: "('a * 'a)set => bool"
+  "wf(r) == (!P. (!x. (!y. (y,x):r --> P(y)) --> P(x)) --> (!x. P(x)))"
+
+  wfP :: "('a => 'a => bool) => bool"
+  "wfP r == wf {(x, y). r x y}"
+
+  acyclic :: "('a*'a)set => bool"
+  "acyclic r == !x. (x,x) ~: r^+"
+
+  cut        :: "('a => 'b) => ('a * 'a)set => 'a => 'a => 'b"
+  "cut f r x == (%y. if (y,x):r then f y else arbitrary)"
+
+  adm_wf :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => bool"
+  "adm_wf R F == ALL f g x.
+     (ALL z. (z, x) : R --> f z = g z) --> F f x = F g x"
+
+  wfrec :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => 'a => 'b"
+  [code func del]: "wfrec R F == %x. THE y. wfrec_rel R (%f x. F (cut f R x) x) x y"
+
+abbreviation acyclicP :: "('a => 'a => bool) => bool" where
+  "acyclicP r == acyclic {(x, y). r x y}"
+
+class wellorder = linorder +
+  assumes wf: "wf {(x, y). x < y}"
+
+
+lemma wfP_wf_eq [pred_set_conv]: "wfP (\<lambda>x y. (x, y) \<in> r) = wf r"
+  by (simp add: wfP_def)
+
+lemma wfUNIVI: 
+   "(!!P x. (ALL x. (ALL y. (y,x) : r --> P(y)) --> P(x)) ==> P(x)) ==> wf(r)"
+  unfolding wf_def by blast
+
+lemmas wfPUNIVI = wfUNIVI [to_pred]
+
+text{*Restriction to domain @{term A} and range @{term B}.  If @{term r} is
+    well-founded over their intersection, then @{term "wf r"}*}
+lemma wfI: 
+ "[| r \<subseteq> A <*> B; 
+     !!x P. [|\<forall>x. (\<forall>y. (y,x) : r --> P y) --> P x;  x : A; x : B |] ==> P x |]
+  ==>  wf r"
+  unfolding wf_def by blast
+
+lemma wf_induct: 
+    "[| wf(r);           
+        !!x.[| ALL y. (y,x): r --> P(y) |] ==> P(x)  
+     |]  ==>  P(a)"
+  unfolding wf_def by blast
+
+lemmas wfP_induct = wf_induct [to_pred]
+
+lemmas wf_induct_rule = wf_induct [rule_format, consumes 1, case_names less, induct set: wf]
+
+lemmas wfP_induct_rule = wf_induct_rule [to_pred, induct set: wfP]
+
+lemma wf_not_sym: "wf r ==> (a, x) : r ==> (x, a) ~: r"
+  by (induct a arbitrary: x set: wf) blast
+
+(* [| wf r;  ~Z ==> (a,x) : r;  (x,a) ~: r ==> Z |] ==> Z *)
+lemmas wf_asym = wf_not_sym [elim_format]
+
+lemma wf_not_refl [simp]: "wf r ==> (a, a) ~: r"
+  by (blast elim: wf_asym)
+
+(* [| wf r;  (a,a) ~: r ==> PROP W |] ==> PROP W *)
+lemmas wf_irrefl = wf_not_refl [elim_format]
+
+text{*transitive closure of a well-founded relation is well-founded! *}
+lemma wf_trancl:
+  assumes "wf r"
+  shows "wf (r^+)"
+proof -
+  {
+    fix P and x
+    assume induct_step: "!!x. (!!y. (y, x) : r^+ ==> P y) ==> P x"
+    have "P x"
+    proof (rule induct_step)
+      fix y assume "(y, x) : r^+"
+      with `wf r` show "P y"
+      proof (induct x arbitrary: y)
+	case (less x)
+	note hyp = `\<And>x' y'. (x', x) : r ==> (y', x') : r^+ ==> P y'`
+	from `(y, x) : r^+` show "P y"
+	proof cases
+	  case base
+	  show "P y"
+	  proof (rule induct_step)
+	    fix y' assume "(y', y) : r^+"
+	    with `(y, x) : r` show "P y'" by (rule hyp [of y y'])
+	  qed
+	next
+	  case step
+	  then obtain x' where "(x', x) : r" and "(y, x') : r^+" by simp
+	  then show "P y" by (rule hyp [of x' y])
+	qed
+      qed
+    qed
+  } then show ?thesis unfolding wf_def by blast
+qed
+
+lemmas wfP_trancl = wf_trancl [to_pred]
+
+lemma wf_converse_trancl: "wf (r^-1) ==> wf ((r^+)^-1)"
+  apply (subst trancl_converse [symmetric])
+  apply (erule wf_trancl)
+  done
+
+
+subsubsection {* Other simple well-foundedness results *}
+
+text{*Minimal-element characterization of well-foundedness*}
+lemma wf_eq_minimal: "wf r = (\<forall>Q x. x\<in>Q --> (\<exists>z\<in>Q. \<forall>y. (y,z)\<in>r --> y\<notin>Q))"
+proof (intro iffI strip)
+  fix Q :: "'a set" and x
+  assume "wf r" and "x \<in> Q"
+  then show "\<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q"
+    unfolding wf_def
+    by (blast dest: spec [of _ "%x. x\<in>Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. (y,z) \<in> r \<longrightarrow> y\<notin>Q)"]) 
+next
+  assume 1: "\<forall>Q x. x \<in> Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q)"
+  show "wf r"
+  proof (rule wfUNIVI)
+    fix P :: "'a \<Rightarrow> bool" and x
+    assume 2: "\<forall>x. (\<forall>y. (y, x) \<in> r \<longrightarrow> P y) \<longrightarrow> P x"
+    let ?Q = "{x. \<not> P x}"
+    have "x \<in> ?Q \<longrightarrow> (\<exists>z \<in> ?Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> ?Q)"
+      by (rule 1 [THEN spec, THEN spec])
+    then have "\<not> P x \<longrightarrow> (\<exists>z. \<not> P z \<and> (\<forall>y. (y, z) \<in> r \<longrightarrow> P y))" by simp
+    with 2 have "\<not> P x \<longrightarrow> (\<exists>z. \<not> P z \<and> P z)" by fast
+    then show "P x" by simp
+  qed
+qed
+
+lemma wfE_min: 
+  assumes "wf R" "x \<in> Q"
+  obtains z where "z \<in> Q" "\<And>y. (y, z) \<in> R \<Longrightarrow> y \<notin> Q"
+  using assms unfolding wf_eq_minimal by blast
+
+lemma wfI_min:
+  "(\<And>x Q. x \<in> Q \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> R \<longrightarrow> y \<notin> Q)
+  \<Longrightarrow> wf R"
+  unfolding wf_eq_minimal by blast
+
+lemmas wfP_eq_minimal = wf_eq_minimal [to_pred]
+
+text {* Well-foundedness of subsets *}
+lemma wf_subset: "[| wf(r);  p<=r |] ==> wf(p)"
+  apply (simp (no_asm_use) add: wf_eq_minimal)
+  apply fast
+  done
+
+lemmas wfP_subset = wf_subset [to_pred]
+
+text {* Well-foundedness of the empty relation *}
+lemma wf_empty [iff]: "wf({})"
+  by (simp add: wf_def)
+
+lemmas wfP_empty [iff] =
+  wf_empty [to_pred bot_empty_eq2, simplified bot_fun_eq bot_bool_eq]
+
+lemma wf_Int1: "wf r ==> wf (r Int r')"
+  apply (erule wf_subset)
+  apply (rule Int_lower1)
+  done
+
+lemma wf_Int2: "wf r ==> wf (r' Int r)"
+  apply (erule wf_subset)
+  apply (rule Int_lower2)
+  done  
+
+text{*Well-foundedness of insert*}
+lemma wf_insert [iff]: "wf(insert (y,x) r) = (wf(r) & (x,y) ~: r^*)"
+apply (rule iffI)
+ apply (blast elim: wf_trancl [THEN wf_irrefl]
+              intro: rtrancl_into_trancl1 wf_subset 
+                     rtrancl_mono [THEN [2] rev_subsetD])
+apply (simp add: wf_eq_minimal, safe)
+apply (rule allE, assumption, erule impE, blast) 
+apply (erule bexE)
+apply (rename_tac "a", case_tac "a = x")
+ prefer 2
+apply blast 
+apply (case_tac "y:Q")
+ prefer 2 apply blast
+apply (rule_tac x = "{z. z:Q & (z,y) : r^*}" in allE)
+ apply assumption
+apply (erule_tac V = "ALL Q. (EX x. x : Q) --> ?P Q" in thin_rl) 
+  --{*essential for speed*}
+txt{*Blast with new substOccur fails*}
+apply (fast intro: converse_rtrancl_into_rtrancl)
+done
+
+text{*Well-foundedness of image*}
+lemma wf_prod_fun_image: "[| wf r; inj f |] ==> wf(prod_fun f f ` r)"
+apply (simp only: wf_eq_minimal, clarify)
+apply (case_tac "EX p. f p : Q")
+apply (erule_tac x = "{p. f p : Q}" in allE)
+apply (fast dest: inj_onD, blast)
+done
+
+
+subsubsection {* Well-Foundedness Results for Unions *}
+
+lemma wf_union_compatible:
+  assumes "wf R" "wf S"
+  assumes "S O R \<subseteq> R"
+  shows "wf (R \<union> S)"
+proof (rule wfI_min)
+  fix x :: 'a and Q 
+  let ?Q' = "{x \<in> Q. \<forall>y. (y, x) \<in> R \<longrightarrow> y \<notin> Q}"
+  assume "x \<in> Q"
+  obtain a where "a \<in> ?Q'"
+    by (rule wfE_min [OF `wf R` `x \<in> Q`]) blast
+  with `wf S`
+  obtain z where "z \<in> ?Q'" and zmin: "\<And>y. (y, z) \<in> S \<Longrightarrow> y \<notin> ?Q'" by (erule wfE_min)
+  { 
+    fix y assume "(y, z) \<in> S"
+    then have "y \<notin> ?Q'" by (rule zmin)
+
+    have "y \<notin> Q"
+    proof 
+      assume "y \<in> Q"
+      with `y \<notin> ?Q'` 
+      obtain w where "(w, y) \<in> R" and "w \<in> Q" by auto
+      from `(w, y) \<in> R` `(y, z) \<in> S` have "(w, z) \<in> S O R" by (rule rel_compI)
+      with `S O R \<subseteq> R` have "(w, z) \<in> R" ..
+      with `z \<in> ?Q'` have "w \<notin> Q" by blast 
+      with `w \<in> Q` show False by contradiction
+    qed
+  }
+  with `z \<in> ?Q'` show "\<exists>z\<in>Q. \<forall>y. (y, z) \<in> R \<union> S \<longrightarrow> y \<notin> Q" by blast
+qed
+
+
+text {* Well-foundedness of indexed union with disjoint domains and ranges *}
+
+lemma wf_UN: "[| ALL i:I. wf(r i);  
+         ALL i:I. ALL j:I. r i ~= r j --> Domain(r i) Int Range(r j) = {}  
+      |] ==> wf(UN i:I. r i)"
+apply (simp only: wf_eq_minimal, clarify)
+apply (rename_tac A a, case_tac "EX i:I. EX a:A. EX b:A. (b,a) : r i")
+ prefer 2
+ apply force 
+apply clarify
+apply (drule bspec, assumption)  
+apply (erule_tac x="{a. a:A & (EX b:A. (b,a) : r i) }" in allE)
+apply (blast elim!: allE)  
+done
+
+lemmas wfP_SUP = wf_UN [where I=UNIV and r="\<lambda>i. {(x, y). r i x y}",
+  to_pred SUP_UN_eq2 bot_empty_eq, simplified, standard]
+
+lemma wf_Union: 
+ "[| ALL r:R. wf r;  
+     ALL r:R. ALL s:R. r ~= s --> Domain r Int Range s = {}  
+  |] ==> wf(Union R)"
+apply (simp add: Union_def)
+apply (blast intro: wf_UN)
+done
+
+(*Intuition: we find an (R u S)-min element of a nonempty subset A
+             by case distinction.
+  1. There is a step a -R-> b with a,b : A.
+     Pick an R-min element z of the (nonempty) set {a:A | EX b:A. a -R-> b}.
+     By definition, there is z':A s.t. z -R-> z'. Because z is R-min in the
+     subset, z' must be R-min in A. Because z' has an R-predecessor, it cannot
+     have an S-successor and is thus S-min in A as well.
+  2. There is no such step.
+     Pick an S-min element of A. In this case it must be an R-min
+     element of A as well.
+
+*)
+lemma wf_Un:
+     "[| wf r; wf s; Domain r Int Range s = {} |] ==> wf(r Un s)"
+  using wf_union_compatible[of s r] 
+  by (auto simp: Un_ac)
+
+lemma wf_union_merge: 
+  "wf (R \<union> S) = wf (R O R \<union> R O S \<union> S)" (is "wf ?A = wf ?B")
+proof
+  assume "wf ?A"
+  with wf_trancl have wfT: "wf (?A^+)" .
+  moreover have "?B \<subseteq> ?A^+"
+    by (subst trancl_unfold, subst trancl_unfold) blast
+  ultimately show "wf ?B" by (rule wf_subset)
+next
+  assume "wf ?B"
+
+  show "wf ?A"
+  proof (rule wfI_min)
+    fix Q :: "'a set" and x 
+    assume "x \<in> Q"
+
+    with `wf ?B`
+    obtain z where "z \<in> Q" and "\<And>y. (y, z) \<in> ?B \<Longrightarrow> y \<notin> Q" 
+      by (erule wfE_min)
+    then have A1: "\<And>y. (y, z) \<in> R O R \<Longrightarrow> y \<notin> Q"
+      and A2: "\<And>y. (y, z) \<in> R O S \<Longrightarrow> y \<notin> Q"
+      and A3: "\<And>y. (y, z) \<in> S \<Longrightarrow> y \<notin> Q"
+      by auto
+    
+    show "\<exists>z\<in>Q. \<forall>y. (y, z) \<in> ?A \<longrightarrow> y \<notin> Q"
+    proof (cases "\<forall>y. (y, z) \<in> R \<longrightarrow> y \<notin> Q")
+      case True
+      with `z \<in> Q` A3 show ?thesis by blast
+    next
+      case False 
+      then obtain z' where "z'\<in>Q" "(z', z) \<in> R" by blast
+
+      have "\<forall>y. (y, z') \<in> ?A \<longrightarrow> y \<notin> Q"
+      proof (intro allI impI)
+        fix y assume "(y, z') \<in> ?A"
+        then show "y \<notin> Q"
+        proof
+          assume "(y, z') \<in> R" 
+          then have "(y, z) \<in> R O R" using `(z', z) \<in> R` ..
+          with A1 show "y \<notin> Q" .
+        next
+          assume "(y, z') \<in> S" 
+          then have "(y, z) \<in> R O S" using  `(z', z) \<in> R` ..
+          with A2 show "y \<notin> Q" .
+        qed
+      qed
+      with `z' \<in> Q` show ?thesis ..
+    qed
+  qed
+qed
+
+lemma wf_comp_self: "wf R = wf (R O R)"  -- {* special case *}
+  by (rule wf_union_merge [where S = "{}", simplified])
+
+
+subsubsection {* acyclic *}
+
+lemma acyclicI: "ALL x. (x, x) ~: r^+ ==> acyclic r"
+  by (simp add: acyclic_def)
+
+lemma wf_acyclic: "wf r ==> acyclic r"
+apply (simp add: acyclic_def)
+apply (blast elim: wf_trancl [THEN wf_irrefl])
+done
+
+lemmas wfP_acyclicP = wf_acyclic [to_pred]
+
+lemma acyclic_insert [iff]:
+     "acyclic(insert (y,x) r) = (acyclic r & (x,y) ~: r^*)"
+apply (simp add: acyclic_def trancl_insert)
+apply (blast intro: rtrancl_trans)
+done
+
+lemma acyclic_converse [iff]: "acyclic(r^-1) = acyclic r"
+by (simp add: acyclic_def trancl_converse)
+
+lemmas acyclicP_converse [iff] = acyclic_converse [to_pred]
+
+lemma acyclic_impl_antisym_rtrancl: "acyclic r ==> antisym(r^*)"
+apply (simp add: acyclic_def antisym_def)
+apply (blast elim: rtranclE intro: rtrancl_into_trancl1 rtrancl_trancl_trancl)
+done
+
+(* Other direction:
+acyclic = no loops
+antisym = only self loops
+Goalw [acyclic_def,antisym_def] "antisym( r^* ) ==> acyclic(r - Id)
+==> antisym( r^* ) = acyclic(r - Id)";
+*)
+
+lemma acyclic_subset: "[| acyclic s; r <= s |] ==> acyclic r"
+apply (simp add: acyclic_def)
+apply (blast intro: trancl_mono)
+done
+
+text{* Wellfoundedness of finite acyclic relations*}
+
+lemma finite_acyclic_wf [rule_format]: "finite r ==> acyclic r --> wf r"
+apply (erule finite_induct, blast)
+apply (simp (no_asm_simp) only: split_tupled_all)
+apply simp
+done
+
+lemma finite_acyclic_wf_converse: "[|finite r; acyclic r|] ==> wf (r^-1)"
+apply (erule finite_converse [THEN iffD2, THEN finite_acyclic_wf])
+apply (erule acyclic_converse [THEN iffD2])
+done
+
+lemma wf_iff_acyclic_if_finite: "finite r ==> wf r = acyclic r"
+by (blast intro: finite_acyclic_wf wf_acyclic)
+
+
+subsection{*Well-Founded Recursion*}
+
+text{*cut*}
+
+lemma cuts_eq: "(cut f r x = cut g r x) = (ALL y. (y,x):r --> f(y)=g(y))"
+by (simp add: expand_fun_eq cut_def)
+
+lemma cut_apply: "(x,a):r ==> (cut f r a)(x) = f(x)"
+by (simp add: cut_def)
+
+text{*Inductive characterization of wfrec combinator; for details see:  
+John Harrison, "Inductive definitions: automation and application"*}
+
+lemma wfrec_unique: "[| adm_wf R F; wf R |] ==> EX! y. wfrec_rel R F x y"
+apply (simp add: adm_wf_def)
+apply (erule_tac a=x in wf_induct) 
+apply (rule ex1I)
+apply (rule_tac g = "%x. THE y. wfrec_rel R F x y" in wfrec_rel.wfrecI)
+apply (fast dest!: theI')
+apply (erule wfrec_rel.cases, simp)
+apply (erule allE, erule allE, erule allE, erule mp)
+apply (fast intro: the_equality [symmetric])
+done
+
+lemma adm_lemma: "adm_wf R (%f x. F (cut f R x) x)"
+apply (simp add: adm_wf_def)
+apply (intro strip)
+apply (rule cuts_eq [THEN iffD2, THEN subst], assumption)
+apply (rule refl)
+done
+
+lemma wfrec: "wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a"
+apply (simp add: wfrec_def)
+apply (rule adm_lemma [THEN wfrec_unique, THEN the1_equality], assumption)
+apply (rule wfrec_rel.wfrecI)
+apply (intro strip)
+apply (erule adm_lemma [THEN wfrec_unique, THEN theI'])
+done
+
+subsection {* Code generator setup *}
+
+consts_code
+  "wfrec"   ("\<module>wfrec?")
+attach {*
+fun wfrec f x = f (wfrec f) x;
+*}
+
+
+subsection {*LEAST and wellorderings*}
+
+text{* See also @{text wf_linord_ex_has_least} and its consequences in
+ @{text Wellfounded_Relations.ML}*}
+
+lemma wellorder_Least_lemma [rule_format]:
+     "P (k::'a::wellorder) --> P (LEAST x. P(x)) & (LEAST x. P(x)) <= k"
+apply (rule_tac a = k in wf [THEN wf_induct])
+apply (rule impI)
+apply (rule classical)
+apply (rule_tac s = x in Least_equality [THEN ssubst], auto)
+apply (auto simp add: linorder_not_less [symmetric])
+done
+
+lemmas LeastI   = wellorder_Least_lemma [THEN conjunct1, standard]
+lemmas Least_le = wellorder_Least_lemma [THEN conjunct2, standard]
+
+-- "The following 3 lemmas are due to Brian Huffman"
+lemma LeastI_ex: "EX x::'a::wellorder. P x ==> P (Least P)"
+apply (erule exE)
+apply (erule LeastI)
+done
+
+lemma LeastI2:
+  "[| P (a::'a::wellorder); !!x. P x ==> Q x |] ==> Q (Least P)"
+by (blast intro: LeastI)
+
+lemma LeastI2_ex:
+  "[| EX a::'a::wellorder. P a; !!x. P x ==> Q x |] ==> Q (Least P)"
+by (blast intro: LeastI_ex)
+
+lemma not_less_Least: "[| k < (LEAST x. P x) |] ==> ~P (k::'a::wellorder)"
+apply (simp (no_asm_use) add: linorder_not_le [symmetric])
+apply (erule contrapos_nn)
+apply (erule Least_le)
+done
+
+subsection {* @{typ nat} is well-founded *}
+
+lemma less_nat_rel: "op < = (\<lambda>m n. n = Suc m)^++"
+proof (rule ext, rule ext, rule iffI)
+  fix n m :: nat
+  assume "m < n"
+  then show "(\<lambda>m n. n = Suc m)^++ m n"
+  proof (induct n)
+    case 0 then show ?case by auto
+  next
+    case (Suc n) then show ?case
+      by (auto simp add: less_Suc_eq_le le_less intro: tranclp.trancl_into_trancl)
+  qed
+next
+  fix n m :: nat
+  assume "(\<lambda>m n. n = Suc m)^++ m n"
+  then show "m < n"
+    by (induct n)
+      (simp_all add: less_Suc_eq_le reflexive le_less)
+qed
+
+definition
+  pred_nat :: "(nat * nat) set" where
+  "pred_nat = {(m, n). n = Suc m}"
+
+definition
+  less_than :: "(nat * nat) set" where
+  "less_than = pred_nat^+"
+
+lemma less_eq: "(m, n) \<in> pred_nat^+ \<longleftrightarrow> m < n"
+  unfolding less_nat_rel pred_nat_def trancl_def by simp
+
+lemma pred_nat_trancl_eq_le:
+  "(m, n) \<in> pred_nat^* \<longleftrightarrow> m \<le> n"
+  unfolding less_eq rtrancl_eq_or_trancl by auto
+
+lemma wf_pred_nat: "wf pred_nat"
+  apply (unfold wf_def pred_nat_def, clarify)
+  apply (induct_tac x, blast+)
+  done
+
+lemma wf_less_than [iff]: "wf less_than"
+  by (simp add: less_than_def wf_pred_nat [THEN wf_trancl])
+
+lemma trans_less_than [iff]: "trans less_than"
+  by (simp add: less_than_def trans_trancl)
+
+lemma less_than_iff [iff]: "((x,y): less_than) = (x<y)"
+  by (simp add: less_than_def less_eq)
+
+lemma wf_less: "wf {(x, y::nat). x < y}"
+  using wf_less_than by (simp add: less_than_def less_eq [symmetric])
+
+text {* Type @{typ nat} is a wellfounded order *}
+
+instance nat :: wellorder
+  by intro_classes
+    (assumption |
+      rule le_refl le_trans le_anti_sym nat_less_le nat_le_linear wf_less)+
+
+text {* @{text LEAST} theorems for type @{typ nat}*}
+
+lemma Least_Suc:
+     "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))"
+  apply (case_tac "n", auto)
+  apply (frule LeastI)
+  apply (drule_tac P = "%x. P (Suc x) " in LeastI)
+  apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))")
+  apply (erule_tac [2] Least_le)
+  apply (case_tac "LEAST x. P x", auto)
+  apply (drule_tac P = "%x. P (Suc x) " in Least_le)
+  apply (blast intro: order_antisym)
+  done
+
+lemma Least_Suc2:
+   "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)"
+  apply (erule (1) Least_Suc [THEN ssubst])
+  apply simp
+  done
+
+lemma ex_least_nat_le: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k\<le>n. (\<forall>i<k. \<not>P i) & P(k)"
+  apply (cases n)
+   apply blast
+  apply (rule_tac x="LEAST k. P(k)" in exI)
+  apply (blast intro: Least_le dest: not_less_Least intro: LeastI_ex)
+  done
+
+lemma ex_least_nat_less: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k<n. (\<forall>i\<le>k. \<not>P i) & P(k+1)"
+  apply (cases n)
+   apply blast
+  apply (frule (1) ex_least_nat_le)
+  apply (erule exE)
+  apply (case_tac k)
+   apply simp
+  apply (rename_tac k1)
+  apply (rule_tac x=k1 in exI)
+  apply fastsimp
+  done
+
+
+subsection {* Accessible Part *}
+
+text {*
+ Inductive definition of the accessible part @{term "acc r"} of a
+ relation; see also \cite{paulin-tlca}.
+*}
+
+inductive_set
+  acc :: "('a * 'a) set => 'a set"
+  for r :: "('a * 'a) set"
+  where
+    accI: "(!!y. (y, x) : r ==> y : acc r) ==> x : acc r"
+
+abbreviation
+  termip :: "('a => 'a => bool) => 'a => bool" where
+  "termip r == accp (r\<inverse>\<inverse>)"
+
+abbreviation
+  termi :: "('a * 'a) set => 'a set" where
+  "termi r == acc (r\<inverse>)"
+
+lemmas accpI = accp.accI
+
+text {* Induction rules *}
+
+theorem accp_induct:
+  assumes major: "accp r a"
+  assumes hyp: "!!x. accp r x ==> \<forall>y. r y x --> P y ==> P x"
+  shows "P a"
+  apply (rule major [THEN accp.induct])
+  apply (rule hyp)
+   apply (rule accp.accI)
+   apply fast
+  apply fast
+  done
+
+theorems accp_induct_rule = accp_induct [rule_format, induct set: accp]
+
+theorem accp_downward: "accp r b ==> r a b ==> accp r a"
+  apply (erule accp.cases)
+  apply fast
+  done
+
+lemma not_accp_down:
+  assumes na: "\<not> accp R x"
+  obtains z where "R z x" and "\<not> accp R z"
+proof -
+  assume a: "\<And>z. \<lbrakk>R z x; \<not> accp R z\<rbrakk> \<Longrightarrow> thesis"
+
+  show thesis
+  proof (cases "\<forall>z. R z x \<longrightarrow> accp R z")
+    case True
+    hence "\<And>z. R z x \<Longrightarrow> accp R z" by auto
+    hence "accp R x"
+      by (rule accp.accI)
+    with na show thesis ..
+  next
+    case False then obtain z where "R z x" and "\<not> accp R z"
+      by auto
+    with a show thesis .
+  qed
+qed
+
+lemma accp_downwards_aux: "r\<^sup>*\<^sup>* b a ==> accp r a --> accp r b"
+  apply (erule rtranclp_induct)
+   apply blast
+  apply (blast dest: accp_downward)
+  done
+
+theorem accp_downwards: "accp r a ==> r\<^sup>*\<^sup>* b a ==> accp r b"
+  apply (blast dest: accp_downwards_aux)
+  done
+
+theorem accp_wfPI: "\<forall>x. accp r x ==> wfP r"
+  apply (rule wfPUNIVI)
+  apply (induct_tac P x rule: accp_induct)
+   apply blast
+  apply blast
+  done
+
+theorem accp_wfPD: "wfP r ==> accp r x"
+  apply (erule wfP_induct_rule)
+  apply (rule accp.accI)
+  apply blast
+  done
+
+theorem wfP_accp_iff: "wfP r = (\<forall>x. accp r x)"
+  apply (blast intro: accp_wfPI dest: accp_wfPD)
+  done
+
+
+text {* Smaller relations have bigger accessible parts: *}
+
+lemma accp_subset:
+  assumes sub: "R1 \<le> R2"
+  shows "accp R2 \<le> accp R1"
+proof
+  fix x assume "accp R2 x"
+  then show "accp R1 x"
+  proof (induct x)
+    fix x
+    assume ih: "\<And>y. R2 y x \<Longrightarrow> accp R1 y"
+    with sub show "accp R1 x"
+      by (blast intro: accp.accI)
+  qed
+qed
+
+
+text {* This is a generalized induction theorem that works on
+  subsets of the accessible part. *}
+
+lemma accp_subset_induct:
+  assumes subset: "D \<le> accp R"
+    and dcl: "\<And>x z. \<lbrakk>D x; R z x\<rbrakk> \<Longrightarrow> D z"
+    and "D x"
+    and istep: "\<And>x. \<lbrakk>D x; (\<And>z. R z x \<Longrightarrow> P z)\<rbrakk> \<Longrightarrow> P x"
+  shows "P x"
+proof -
+  from subset and `D x`
+  have "accp R x" ..
+  then show "P x" using `D x`
+  proof (induct x)
+    fix x
+    assume "D x"
+      and "\<And>y. R y x \<Longrightarrow> D y \<Longrightarrow> P y"
+    with dcl and istep show "P x" by blast
+  qed
+qed
+
+
+text {* Set versions of the above theorems *}
+
+lemmas acc_induct = accp_induct [to_set]
+
+lemmas acc_induct_rule = acc_induct [rule_format, induct set: acc]
+
+lemmas acc_downward = accp_downward [to_set]
+
+lemmas not_acc_down = not_accp_down [to_set]
+
+lemmas acc_downwards_aux = accp_downwards_aux [to_set]
+
+lemmas acc_downwards = accp_downwards [to_set]
+
+lemmas acc_wfI = accp_wfPI [to_set]
+
+lemmas acc_wfD = accp_wfPD [to_set]
+
+lemmas wf_acc_iff = wfP_accp_iff [to_set]
+
+lemmas acc_subset = accp_subset [to_set]
+
+lemmas acc_subset_induct = accp_subset_induct [to_set]
+
+
+subsection {* Tools for building wellfounded relations *}
+
+text {* Inverse Image *}
+
+lemma wf_inv_image [simp,intro!]: "wf(r) ==> wf(inv_image r (f::'a=>'b))"
+apply (simp (no_asm_use) add: inv_image_def wf_eq_minimal)
+apply clarify
+apply (subgoal_tac "EX (w::'b) . w : {w. EX (x::'a) . x: Q & (f x = w) }")
+prefer 2 apply (blast del: allE)
+apply (erule allE)
+apply (erule (1) notE impE)
+apply blast
+done
+
+lemma in_inv_image[simp]: "((x,y) : inv_image r f) = ((f x, f y) : r)"
+  by (auto simp:inv_image_def)
+
+text {* Measure functions into @{typ nat} *}
+
+definition measure :: "('a => nat) => ('a * 'a)set"
+where "measure == inv_image less_than"
+
+lemma in_measure[simp]: "((x,y) : measure f) = (f x < f y)"
+  by (simp add:measure_def)
+
+lemma wf_measure [iff]: "wf (measure f)"
+apply (unfold measure_def)
+apply (rule wf_less_than [THEN wf_inv_image])
+done
+
+text{* Lexicographic combinations *}
+
+definition
+ lex_prod  :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set"
+               (infixr "<*lex*>" 80)
+where
+    "ra <*lex*> rb == {((a,b),(a',b')). (a,a') : ra | a=a' & (b,b') : rb}"
+
+lemma wf_lex_prod [intro!]: "[| wf(ra); wf(rb) |] ==> wf(ra <*lex*> rb)"
+apply (unfold wf_def lex_prod_def) 
+apply (rule allI, rule impI)
+apply (simp (no_asm_use) only: split_paired_All)
+apply (drule spec, erule mp) 
+apply (rule allI, rule impI)
+apply (drule spec, erule mp, blast) 
+done
+
+lemma in_lex_prod[simp]: 
+  "(((a,b),(a',b')): r <*lex*> s) = ((a,a'): r \<or> (a = a' \<and> (b, b') : s))"
+  by (auto simp:lex_prod_def)
+
+text{* @{term "op <*lex*>"} preserves transitivity *}
+
+lemma trans_lex_prod [intro!]: 
+    "[| trans R1; trans R2 |] ==> trans (R1 <*lex*> R2)"
+by (unfold trans_def lex_prod_def, blast) 
+
+text {* lexicographic combinations with measure functions *}
+
+definition 
+  mlex_prod :: "('a \<Rightarrow> nat) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" (infixr "<*mlex*>" 80)
+where
+  "f <*mlex*> R = inv_image (less_than <*lex*> R) (%x. (f x, x))"
+
+lemma wf_mlex: "wf R \<Longrightarrow> wf (f <*mlex*> R)"
+unfolding mlex_prod_def
+by auto
+
+lemma mlex_less: "f x < f y \<Longrightarrow> (x, y) \<in> f <*mlex*> R"
+unfolding mlex_prod_def by simp
+
+lemma mlex_leq: "f x \<le> f y \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (x, y) \<in> f <*mlex*> R"
+unfolding mlex_prod_def by auto
+
+text {* proper subset relation on finite sets *}
+
+definition finite_psubset  :: "('a set * 'a set) set"
+where "finite_psubset == {(A,B). A < B & finite B}"
+
+lemma wf_finite_psubset: "wf(finite_psubset)"
+apply (unfold finite_psubset_def)
+apply (rule wf_measure [THEN wf_subset])
+apply (simp add: measure_def inv_image_def less_than_def less_eq)
+apply (fast elim!: psubset_card_mono)
+done
+
+lemma trans_finite_psubset: "trans finite_psubset"
+by (simp add: finite_psubset_def psubset_def trans_def, blast)
+
+
+
+
+text {*Wellfoundedness of @{text same_fst}*}
+
+definition
+ same_fst :: "('a => bool) => ('a => ('b * 'b)set) => (('a*'b)*('a*'b))set"
+where
+    "same_fst P R == {((x',y'),(x,y)) . x'=x & P x & (y',y) : R x}"
+   --{*For @{text rec_def} declarations where the first n parameters
+       stay unchanged in the recursive call. 
+       See @{text "Library/While_Combinator.thy"} for an application.*}
+
+lemma same_fstI [intro!]:
+     "[| P x; (y',y) : R x |] ==> ((x,y'),(x,y)) : same_fst P R"
+by (simp add: same_fst_def)
+
+lemma wf_same_fst:
+  assumes prem: "(!!x. P x ==> wf(R x))"
+  shows "wf(same_fst P R)"
+apply (simp cong del: imp_cong add: wf_def same_fst_def)
+apply (intro strip)
+apply (rename_tac a b)
+apply (case_tac "wf (R a)")
+ apply (erule_tac a = b in wf_induct, blast)
+apply (blast intro: prem)
+done
+
+
+subsection{*Weakly decreasing sequences (w.r.t. some well-founded order) 
+   stabilize.*}
+
+text{*This material does not appear to be used any longer.*}
+
+lemma lemma1: "[| ALL i. (f (Suc i), f i) : r^* |] ==> (f (i+k), f i) : r^*"
+apply (induct_tac "k", simp_all)
+apply (blast intro: rtrancl_trans)
+done
+
+lemma lemma2: "[| ALL i. (f (Suc i), f i) : r^*; wf (r^+) |]  
+      ==> ALL m. f m = x --> (EX i. ALL k. f (m+i+k) = f (m+i))"
+apply (erule wf_induct, clarify)
+apply (case_tac "EX j. (f (m+j), f m) : r^+")
+ apply clarify
+ apply (subgoal_tac "EX i. ALL k. f ((m+j) +i+k) = f ( (m+j) +i) ")
+  apply clarify
+  apply (rule_tac x = "j+i" in exI)
+  apply (simp add: add_ac, blast)
+apply (rule_tac x = 0 in exI, clarsimp)
+apply (drule_tac i = m and k = k in lemma1)
+apply (blast elim: rtranclE dest: rtrancl_into_trancl1)
+done
+
+lemma wf_weak_decr_stable: "[| ALL i. (f (Suc i), f i) : r^*; wf (r^+) |]  
+      ==> EX i. ALL k. f (i+k) = f i"
+apply (drule_tac x = 0 in lemma2 [THEN spec], auto)
+done
+
+(* special case of the theorem above: <= *)
+lemma weak_decr_stable:
+     "ALL i. f (Suc i) <= ((f i)::nat) ==> EX i. ALL k. f (i+k) = f i"
+apply (rule_tac r = pred_nat in wf_weak_decr_stable)
+apply (simp add: pred_nat_trancl_eq_le)
+apply (intro wf_trancl wf_pred_nat)
+done
+
+
+subsection {* size of a datatype value *}
+
+use "Tools/function_package/size.ML"
+
+setup Size.setup
+
+lemma nat_size [simp, code func]: "size (n\<Colon>nat) = n"
+  by (induct n) simp_all
+
+
+end