--- a/src/HOL/Algebra/Lattice.thy Sun Sep 13 22:25:21 2015 +0200
+++ b/src/HOL/Algebra/Lattice.thy Sun Sep 13 22:56:52 2015 +0200
@@ -921,7 +921,7 @@
lemma (in weak_partial_order) weak_total_orderI:
assumes total: "!!x y. [| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
shows "weak_total_order L"
- by default (rule total)
+ by standard (rule total)
text {* Total orders are lattices. *}
@@ -985,7 +985,7 @@
and inf_exists:
"!!A. [| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
shows "weak_complete_lattice L"
- by default (auto intro: sup_exists inf_exists)
+ by standard (auto intro: sup_exists inf_exists)
definition
top :: "_ => 'a" ("\<top>\<index>")
@@ -1133,14 +1133,14 @@
"[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. least L s (Upper L {x, y})"
sublocale upper_semilattice < weak: weak_upper_semilattice
- by default (rule sup_of_two_exists)
+ by standard (rule sup_of_two_exists)
locale lower_semilattice = partial_order +
assumes inf_of_two_exists:
"[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. greatest L s (Lower L {x, y})"
sublocale lower_semilattice < weak: weak_lower_semilattice
- by default (rule inf_of_two_exists)
+ by standard (rule inf_of_two_exists)
locale lattice = upper_semilattice + lower_semilattice
@@ -1191,19 +1191,19 @@
assumes total_order_total: "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
sublocale total_order < weak: weak_total_order
- by default (rule total_order_total)
+ by standard (rule total_order_total)
text {* Introduction rule: the usual definition of total order *}
lemma (in partial_order) total_orderI:
assumes total: "!!x y. [| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
shows "total_order L"
- by default (rule total)
+ by standard (rule total)
text {* Total orders are lattices. *}
sublocale total_order < weak: lattice
- by default (auto intro: sup_of_two_exists inf_of_two_exists)
+ by standard (auto intro: sup_of_two_exists inf_of_two_exists)
text {* Complete lattices *}
@@ -1215,7 +1215,7 @@
"[| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
sublocale complete_lattice < weak: weak_complete_lattice
- by default (auto intro: sup_exists inf_exists)
+ by standard (auto intro: sup_exists inf_exists)
text {* Introduction rule: the usual definition of complete lattice *}
@@ -1225,7 +1225,7 @@
and inf_exists:
"!!A. [| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
shows "complete_lattice L"
- by default (auto intro: sup_exists inf_exists)
+ by standard (auto intro: sup_exists inf_exists)
theorem (in partial_order) complete_lattice_criterion1:
assumes top_exists: "EX g. greatest L g (carrier L)"
@@ -1282,7 +1282,7 @@
(is "complete_lattice ?L")
proof (rule partial_order.complete_latticeI)
show "partial_order ?L"
- by default auto
+ by standard auto
next
fix B
assume "B \<subseteq> carrier ?L"