doc-src/TutorialI/Types/document/Pairs.tex
changeset 48536 4e2ee88276d2
parent 48535 619531d87ce4
parent 48528 784c6f63d79c
child 48537 ba0dd46b9214
--- a/doc-src/TutorialI/Types/document/Pairs.tex	Thu Jul 26 16:08:16 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,394 +0,0 @@
-%
-\begin{isabellebody}%
-\def\isabellecontext{Pairs}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isamarkupsection{Pairs and Tuples%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\label{sec:products}
-Ordered pairs were already introduced in \S\ref{sec:pairs}, but only with a minimal
-repertoire of operations: pairing and the two projections \isa{fst} and
-\isa{snd}. In any non-trivial application of pairs you will find that this
-quickly leads to unreadable nests of projections. This
-section introduces syntactic sugar to overcome this
-problem: pattern matching with tuples.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Pattern Matching with Tuples%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Tuples may be used as patterns in $\lambda$-abstractions,
-for example \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}x{\isaliteral{2B}{\isacharplus}}y{\isaliteral{2B}{\isacharplus}}z} and \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}x{\isaliteral{2B}{\isacharplus}}y{\isaliteral{2B}{\isacharplus}}z}. In fact,
-tuple patterns can be used in most variable binding constructs,
-and they can be nested. Here are
-some typical examples:
-\begin{quote}
-\isa{let\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ f\ z\ in\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ x{\isaliteral{29}{\isacharparenright}}}\\
-\isa{case\ xs\ of\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isadigit{0}}\ {\isaliteral{7C}{\isacharbar}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{23}{\isacharhash}}\ zs\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ x\ {\isaliteral{2B}{\isacharplus}}\ y}\\
-\isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{5C3C696E3E}{\isasymin}}A{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}y}\\
-\isa{{\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}z{\isaliteral{7D}{\isacharbraceright}}}\\
-\isa{{\isaliteral{5C3C556E696F6E3E}{\isasymUnion}}\isaliteral{5C3C5E627375623E}{}\isactrlbsub {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}{\isaliteral{5C3C696E3E}{\isasymin}}A\isaliteral{5C3C5E657375623E}{}\isactrlesub \ {\isaliteral{7B}{\isacharbraceleft}}x\ {\isaliteral{2B}{\isacharplus}}\ y{\isaliteral{7D}{\isacharbraceright}}}
-\end{quote}
-The intuitive meanings of these expressions should be obvious.
-Unfortunately, we need to know in more detail what the notation really stands
-for once we have to reason about it.  Abstraction
-over pairs and tuples is merely a convenient shorthand for a more complex
-internal representation.  Thus the internal and external form of a term may
-differ, which can affect proofs. If you want to avoid this complication,
-stick to \isa{fst} and \isa{snd} and write \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}p{\isaliteral{2E}{\isachardot}}\ fst\ p\ {\isaliteral{2B}{\isacharplus}}\ snd\ p}
-instead of \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{2B}{\isacharplus}}y}.  These terms are distinct even though they
-denote the same function.
-
-Internally, \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ t} becomes \isa{split\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}x\ y{\isaliteral{2E}{\isachardot}}\ t{\isaliteral{29}{\isacharparenright}}}, where
-\cdx{split} is the uncurrying function of type \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}c{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}c} defined as
-\begin{center}
-\isa{prod{\isaliteral{5F}{\isacharunderscore}}case\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}c\ p{\isaliteral{2E}{\isachardot}}\ c\ {\isaliteral{28}{\isacharparenleft}}fst\ p{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}snd\ p{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}}
-\hfill(\isa{split{\isaliteral{5F}{\isacharunderscore}}def})
-\end{center}
-Pattern matching in
-other variable binding constructs is translated similarly. Thus we need to
-understand how to reason about such constructs.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Theorem Proving%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-The most obvious approach is the brute force expansion of \isa{prod{\isaliteral{5F}{\isacharunderscore}}case}:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{lemma}\isamarkupfalse%
-\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}x{\isaliteral{29}{\isacharparenright}}\ p\ {\isaliteral{3D}{\isacharequal}}\ fst\ p{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{by}\isamarkupfalse%
-{\isaliteral{28}{\isacharparenleft}}simp\ add{\isaliteral{3A}{\isacharcolon}}\ split{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{29}{\isacharparenright}}%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-\noindent
-This works well if rewriting with \isa{split{\isaliteral{5F}{\isacharunderscore}}def} finishes the
-proof, as it does above.  But if it does not, you end up with exactly what
-we are trying to avoid: nests of \isa{fst} and \isa{snd}. Thus this
-approach is neither elegant nor very practical in large examples, although it
-can be effective in small ones.
-
-If we consider why this lemma presents a problem, 
-we realize that we need to replace variable~\isa{p} by some pair \isa{{\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}}.  Then both sides of the
-equation would simplify to \isa{a} by the simplification rules
-\isa{{\isaliteral{28}{\isacharparenleft}}case\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ of\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ xa{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ f\ x\ xa{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ f\ a\ b} and \isa{fst\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ a}.  
-To reason about tuple patterns requires some way of
-converting a variable of product type into a pair.
-In case of a subterm of the form \isa{case\ p\ of\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ xa{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ f\ x\ xa} this is easy: the split
-rule \isa{split{\isaliteral{5F}{\isacharunderscore}}split} replaces \isa{p} by a pair:%
-\index{*split (method)}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{lemma}\isamarkupfalse%
-\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}y{\isaliteral{29}{\isacharparenright}}\ p\ {\isaliteral{3D}{\isacharequal}}\ snd\ p{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{apply}\isamarkupfalse%
-{\isaliteral{28}{\isacharparenleft}}split\ split{\isaliteral{5F}{\isacharunderscore}}split{\isaliteral{29}{\isacharparenright}}%
-\begin{isamarkuptxt}%
-\begin{isabelle}%
-\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x\ y{\isaliteral{2E}{\isachardot}}\ p\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ y\ {\isaliteral{3D}{\isacharequal}}\ snd\ p%
-\end{isabelle}
-This subgoal is easily proved by simplification. Thus we could have combined
-simplification and splitting in one command that proves the goal outright:%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{by}\isamarkupfalse%
-{\isaliteral{28}{\isacharparenleft}}simp\ split{\isaliteral{3A}{\isacharcolon}}\ split{\isaliteral{5F}{\isacharunderscore}}split{\isaliteral{29}{\isacharparenright}}%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-Let us look at a second example:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{lemma}\isamarkupfalse%
-\ {\isaliteral{22}{\isachardoublequoteopen}}let\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ p\ in\ fst\ p\ {\isaliteral{3D}{\isacharequal}}\ x{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{apply}\isamarkupfalse%
-{\isaliteral{28}{\isacharparenleft}}simp\ only{\isaliteral{3A}{\isacharcolon}}\ Let{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{29}{\isacharparenright}}%
-\begin{isamarkuptxt}%
-\begin{isabelle}%
-\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ case\ p\ of\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ fst\ p\ {\isaliteral{3D}{\isacharequal}}\ x%
-\end{isabelle}
-A paired \isa{let} reduces to a paired $\lambda$-abstraction, which
-can be split as above. The same is true for paired set comprehension:%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-\isacommand{lemma}\isamarkupfalse%
-\ {\isaliteral{22}{\isachardoublequoteopen}}p\ {\isaliteral{5C3C696E3E}{\isasymin}}\ {\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}y{\isaliteral{7D}{\isacharbraceright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ fst\ p\ {\isaliteral{3D}{\isacharequal}}\ snd\ p{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{apply}\isamarkupfalse%
-\ simp%
-\begin{isamarkuptxt}%
-\begin{isabelle}%
-\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}case\ p\ of\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ xa{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ x\ {\isaliteral{3D}{\isacharequal}}\ xa{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ fst\ p\ {\isaliteral{3D}{\isacharequal}}\ snd\ p%
-\end{isabelle}
-Again, simplification produces a term suitable for \isa{split{\isaliteral{5F}{\isacharunderscore}}split}
-as above. If you are worried about the strange form of the premise:
-\isa{split\ {\isaliteral{28}{\isacharparenleft}}op\ {\isaliteral{3D}{\isacharequal}}{\isaliteral{29}{\isacharparenright}}} is short for \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{3D}{\isacharequal}}\ y}.
-The same proof procedure works for%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-\isacommand{lemma}\isamarkupfalse%
-\ {\isaliteral{22}{\isachardoublequoteopen}}p\ {\isaliteral{5C3C696E3E}{\isasymin}}\ {\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}y{\isaliteral{7D}{\isacharbraceright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ fst\ p\ {\isaliteral{3D}{\isacharequal}}\ snd\ p{\isaliteral{22}{\isachardoublequoteclose}}%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-%
-\begin{isamarkuptxt}%
-\noindent
-except that we now have to use \isa{split{\isaliteral{5F}{\isacharunderscore}}split{\isaliteral{5F}{\isacharunderscore}}asm}, because
-\isa{prod{\isaliteral{5F}{\isacharunderscore}}case} occurs in the assumptions.
-
-However, splitting \isa{prod{\isaliteral{5F}{\isacharunderscore}}case} is not always a solution, as no \isa{prod{\isaliteral{5F}{\isacharunderscore}}case}
-may be present in the goal. Consider the following function:%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-\isacommand{primrec}\isamarkupfalse%
-\ swap\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\ {\isaliteral{22}{\isachardoublequoteopen}}swap\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}x{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
-\begin{isamarkuptext}%
-\noindent
-Note that the above \isacommand{primrec} definition is admissible
-because \isa{{\isaliteral{5C3C74696D65733E}{\isasymtimes}}} is a datatype. When we now try to prove%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{lemma}\isamarkupfalse%
-\ {\isaliteral{22}{\isachardoublequoteopen}}swap{\isaliteral{28}{\isacharparenleft}}swap\ p{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ p{\isaliteral{22}{\isachardoublequoteclose}}%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-%
-\begin{isamarkuptxt}%
-\noindent
-simplification will do nothing, because the defining equation for
-\isa{swap} expects a pair. Again, we need to turn \isa{p}
-into a pair first, but this time there is no \isa{prod{\isaliteral{5F}{\isacharunderscore}}case} in sight.
-The only thing we can do is to split the term by hand:%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-\isacommand{apply}\isamarkupfalse%
-{\isaliteral{28}{\isacharparenleft}}case{\isaliteral{5F}{\isacharunderscore}}tac\ p{\isaliteral{29}{\isacharparenright}}%
-\begin{isamarkuptxt}%
-\noindent
-\begin{isabelle}%
-\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}a\ b{\isaliteral{2E}{\isachardot}}\ p\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ swap\ {\isaliteral{28}{\isacharparenleft}}swap\ p{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ p%
-\end{isabelle}
-Again, \methdx{case_tac} is applicable because \isa{{\isaliteral{5C3C74696D65733E}{\isasymtimes}}} is a datatype.
-The subgoal is easily proved by \isa{simp}.
-
-Splitting by \isa{case{\isaliteral{5F}{\isacharunderscore}}tac} also solves the previous examples and may thus
-appear preferable to the more arcane methods introduced first. However, see
-the warning about \isa{case{\isaliteral{5F}{\isacharunderscore}}tac} in \S\ref{sec:struct-ind-case}.
-
-Alternatively, you can split \emph{all} \isa{{\isaliteral{5C3C416E643E}{\isasymAnd}}}-quantified variables
-in a goal with the rewrite rule \isa{split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}all}:%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-\isacommand{lemma}\isamarkupfalse%
-\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C416E643E}{\isasymAnd}}p\ q{\isaliteral{2E}{\isachardot}}\ swap{\isaliteral{28}{\isacharparenleft}}swap\ p{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ q\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ p\ {\isaliteral{3D}{\isacharequal}}\ q{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{apply}\isamarkupfalse%
-{\isaliteral{28}{\isacharparenleft}}simp\ only{\isaliteral{3A}{\isacharcolon}}\ split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}all{\isaliteral{29}{\isacharparenright}}%
-\begin{isamarkuptxt}%
-\noindent
-\begin{isabelle}%
-\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}a\ b\ aa\ ba{\isaliteral{2E}{\isachardot}}\ swap\ {\isaliteral{28}{\isacharparenleft}}swap\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}aa{\isaliteral{2C}{\isacharcomma}}\ ba{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}aa{\isaliteral{2C}{\isacharcomma}}\ ba{\isaliteral{29}{\isacharparenright}}%
-\end{isabelle}%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-\isacommand{apply}\isamarkupfalse%
-\ simp\isanewline
-\isacommand{done}\isamarkupfalse%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-\noindent
-Note that we have intentionally included only \isa{split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}all}
-in the first simplification step, and then we simplify again. 
-This time the reason was not merely
-pedagogical:
-\isa{split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}all} may interfere with other functions
-of the simplifier.
-The following command could fail (here it does not)
-where two separate \isa{simp} applications succeed.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{apply}\isamarkupfalse%
-{\isaliteral{28}{\isacharparenleft}}simp\ add{\isaliteral{3A}{\isacharcolon}}\ split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}all{\isaliteral{29}{\isacharparenright}}%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-\noindent
-Finally, the simplifier automatically splits all \isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}} and
-\isa{{\isaliteral{5C3C6578697374733E}{\isasymexists}}}-quantified variables:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{lemma}\isamarkupfalse%
-\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}q{\isaliteral{2E}{\isachardot}}\ swap\ p\ {\isaliteral{3D}{\isacharequal}}\ swap\ q{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{by}\isamarkupfalse%
-\ simp%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-\noindent
-To turn off this automatic splitting, disable the
-responsible simplification rules:
-\begin{center}
-\isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}a\ b{\isaliteral{2E}{\isachardot}}\ P\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}}
-\hfill
-(\isa{split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}All})\\
-\isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}x{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}a\ b{\isaliteral{2E}{\isachardot}}\ P\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}}
-\hfill
-(\isa{split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}Ex})
-\end{center}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-\end{isabellebody}%
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "root"
-%%% End: