--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/TutorialI/document/Trie.tex Thu Jul 26 19:59:06 2012 +0200
@@ -0,0 +1,297 @@
+%
+\begin{isabellebody}%
+\def\isabellecontext{Trie}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\begin{isamarkuptext}%
+To minimize running time, each node of a trie should contain an array that maps
+letters to subtries. We have chosen a
+representation where the subtries are held in an association list, i.e.\ a
+list of (letter,trie) pairs. Abstracting over the alphabet \isa{{\isaliteral{27}{\isacharprime}}a} and the
+values \isa{{\isaliteral{27}{\isacharprime}}v} we define a trie as follows:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{datatype}\isamarkupfalse%
+\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a{\isaliteral{2C}{\isacharcomma}}{\isaliteral{27}{\isacharprime}}v{\isaliteral{29}{\isacharparenright}}trie\ {\isaliteral{3D}{\isacharequal}}\ Trie\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}v\ option{\isaliteral{22}{\isachardoublequoteclose}}\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a{\isaliteral{2C}{\isacharcomma}}{\isaliteral{27}{\isacharprime}}v{\isaliteral{29}{\isacharparenright}}trie{\isaliteral{29}{\isacharparenright}}list{\isaliteral{22}{\isachardoublequoteclose}}%
+\begin{isamarkuptext}%
+\noindent
+\index{datatypes!and nested recursion}%
+The first component is the optional value, the second component the
+association list of subtries. This is an example of nested recursion involving products,
+which is fine because products are datatypes as well.
+We define two selector functions:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{primrec}\isamarkupfalse%
+\ {\isaliteral{22}{\isachardoublequoteopen}}value{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a{\isaliteral{2C}{\isacharcomma}}{\isaliteral{27}{\isacharprime}}v{\isaliteral{29}{\isacharparenright}}trie\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}v\ option{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}value{\isaliteral{28}{\isacharparenleft}}Trie\ ov\ al{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ ov{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+\isacommand{primrec}\isamarkupfalse%
+\ alist\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a{\isaliteral{2C}{\isacharcomma}}{\isaliteral{27}{\isacharprime}}v{\isaliteral{29}{\isacharparenright}}trie\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a{\isaliteral{2C}{\isacharcomma}}{\isaliteral{27}{\isacharprime}}v{\isaliteral{29}{\isacharparenright}}trie{\isaliteral{29}{\isacharparenright}}list{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}alist{\isaliteral{28}{\isacharparenleft}}Trie\ ov\ al{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ al{\isaliteral{22}{\isachardoublequoteclose}}%
+\begin{isamarkuptext}%
+\noindent
+Association lists come with a generic lookup function. Its result
+involves type \isa{option} because a lookup can fail:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{primrec}\isamarkupfalse%
+\ assoc\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}key\ {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{27}{\isacharprime}}val{\isaliteral{29}{\isacharparenright}}list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}key\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}val\ option{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}assoc\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ x\ {\isaliteral{3D}{\isacharequal}}\ None{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}assoc\ {\isaliteral{28}{\isacharparenleft}}p{\isaliteral{23}{\isacharhash}}ps{\isaliteral{29}{\isacharparenright}}\ x\ {\isaliteral{3D}{\isacharequal}}\isanewline
+\ \ \ {\isaliteral{28}{\isacharparenleft}}let\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ p\ in\ if\ a{\isaliteral{3D}{\isacharequal}}x\ then\ Some\ b\ else\ assoc\ ps\ x{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
+\begin{isamarkuptext}%
+Now we can define the lookup function for tries. It descends into the trie
+examining the letters of the search string one by one. As
+recursion on lists is simpler than on tries, let us express this as primitive
+recursion on the search string argument:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{primrec}\isamarkupfalse%
+\ lookup\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a{\isaliteral{2C}{\isacharcomma}}{\isaliteral{27}{\isacharprime}}v{\isaliteral{29}{\isacharparenright}}trie\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}v\ option{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}lookup\ t\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ value\ t{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}lookup\ t\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{23}{\isacharhash}}as{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}case\ assoc\ {\isaliteral{28}{\isacharparenleft}}alist\ t{\isaliteral{29}{\isacharparenright}}\ a\ of\isanewline
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ None\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ None\isanewline
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{7C}{\isacharbar}}\ Some\ at\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ lookup\ at\ as{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
+\begin{isamarkuptext}%
+As a first simple property we prove that looking up a string in the empty
+trie \isa{Trie\ None\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}} always returns \isa{None}. The proof merely
+distinguishes the two cases whether the search string is empty or not:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{lemma}\isamarkupfalse%
+\ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}lookup\ {\isaliteral{28}{\isacharparenleft}}Trie\ None\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\ as\ {\isaliteral{3D}{\isacharequal}}\ None{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+\isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}case{\isaliteral{5F}{\isacharunderscore}}tac\ as{\isaliteral{2C}{\isacharcomma}}\ simp{\isaliteral{5F}{\isacharunderscore}}all{\isaliteral{29}{\isacharparenright}}\isanewline
+\isacommand{done}\isamarkupfalse%
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\begin{isamarkuptext}%
+Things begin to get interesting with the definition of an update function
+that adds a new (string, value) pair to a trie, overwriting the old value
+associated with that string:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{primrec}\isamarkupfalse%
+\ update{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a{\isaliteral{2C}{\isacharcomma}}{\isaliteral{27}{\isacharprime}}v{\isaliteral{29}{\isacharparenright}}trie\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}v\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a{\isaliteral{2C}{\isacharcomma}}{\isaliteral{27}{\isacharprime}}v{\isaliteral{29}{\isacharparenright}}trie{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}update\ t\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ \ \ \ \ v\ {\isaliteral{3D}{\isacharequal}}\ Trie\ {\isaliteral{28}{\isacharparenleft}}Some\ v{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}alist\ t{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}update\ t\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{23}{\isacharhash}}as{\isaliteral{29}{\isacharparenright}}\ v\ {\isaliteral{3D}{\isacharequal}}\isanewline
+\ \ \ {\isaliteral{28}{\isacharparenleft}}let\ tt\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}case\ assoc\ {\isaliteral{28}{\isacharparenleft}}alist\ t{\isaliteral{29}{\isacharparenright}}\ a\ of\isanewline
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ None\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ Trie\ None\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{7C}{\isacharbar}}\ Some\ at\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ at{\isaliteral{29}{\isacharparenright}}\isanewline
+\ \ \ \ in\ Trie\ {\isaliteral{28}{\isacharparenleft}}value\ t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}update\ tt\ as\ v{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{23}{\isacharhash}}\ alist\ t{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
+\begin{isamarkuptext}%
+\noindent
+The base case is obvious. In the recursive case the subtrie
+\isa{tt} associated with the first letter \isa{a} is extracted,
+recursively updated, and then placed in front of the association list.
+The old subtrie associated with \isa{a} is still in the association list
+but no longer accessible via \isa{assoc}. Clearly, there is room here for
+optimizations!
+
+Before we start on any proofs about \isa{update} we tell the simplifier to
+expand all \isa{let}s and to split all \isa{case}-constructs over
+options:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{declare}\isamarkupfalse%
+\ Let{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}\ option{\isaliteral{2E}{\isachardot}}split{\isaliteral{5B}{\isacharbrackleft}}split{\isaliteral{5D}{\isacharbrackright}}%
+\begin{isamarkuptext}%
+\noindent
+The reason becomes clear when looking (probably after a failed proof
+attempt) at the body of \isa{update}: it contains both
+\isa{let} and a case distinction over type \isa{option}.
+
+Our main goal is to prove the correct interaction of \isa{update} and
+\isa{lookup}:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{theorem}\isamarkupfalse%
+\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t\ v\ bs{\isaliteral{2E}{\isachardot}}\ lookup\ {\isaliteral{28}{\isacharparenleft}}update\ t\ as\ v{\isaliteral{29}{\isacharparenright}}\ bs\ {\isaliteral{3D}{\isacharequal}}\isanewline
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{28}{\isacharparenleft}}if\ as{\isaliteral{3D}{\isacharequal}}bs\ then\ Some\ v\ else\ lookup\ t\ bs{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+%
+\begin{isamarkuptxt}%
+\noindent
+Our plan is to induct on \isa{as}; hence the remaining variables are
+quantified. From the definitions it is clear that induction on either
+\isa{as} or \isa{bs} is required. The choice of \isa{as} is
+guided by the intuition that simplification of \isa{lookup} might be easier
+if \isa{update} has already been simplified, which can only happen if
+\isa{as} is instantiated.
+The start of the proof is conventional:%
+\end{isamarkuptxt}%
+\isamarkuptrue%
+\isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ as{\isaliteral{2C}{\isacharcomma}}\ auto{\isaliteral{29}{\isacharparenright}}%
+\begin{isamarkuptxt}%
+\noindent
+Unfortunately, this time we are left with three intimidating looking subgoals:
+\begin{isabelle}
+~1.~\dots~{\isasymLongrightarrow}~lookup~\dots~bs~=~lookup~t~bs\isanewline
+~2.~\dots~{\isasymLongrightarrow}~lookup~\dots~bs~=~lookup~t~bs\isanewline
+~3.~\dots~{\isasymLongrightarrow}~lookup~\dots~bs~=~lookup~t~bs
+\end{isabelle}
+Clearly, if we want to make headway we have to instantiate \isa{bs} as
+well now. It turns out that instead of induction, case distinction
+suffices:%
+\end{isamarkuptxt}%
+\isamarkuptrue%
+\isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}case{\isaliteral{5F}{\isacharunderscore}}tac{\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{21}{\isacharbang}}{\isaliteral{5D}{\isacharbrackright}}\ bs{\isaliteral{2C}{\isacharcomma}}\ auto{\isaliteral{29}{\isacharparenright}}\isanewline
+\isacommand{done}\isamarkupfalse%
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\begin{isamarkuptext}%
+\noindent
+\index{subgoal numbering}%
+All methods ending in \isa{tac} take an optional first argument that
+specifies the range of subgoals they are applied to, where \isa{{\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{21}{\isacharbang}}{\isaliteral{5D}{\isacharbrackright}}} means
+all subgoals, i.e.\ \isa{{\isaliteral{5B}{\isacharbrackleft}}{\isadigit{1}}{\isaliteral{2D}{\isacharminus}}{\isadigit{3}}{\isaliteral{5D}{\isacharbrackright}}} in our case. Individual subgoal numbers,
+e.g. \isa{{\isaliteral{5B}{\isacharbrackleft}}{\isadigit{2}}{\isaliteral{5D}{\isacharbrackright}}} are also allowed.
+
+This proof may look surprisingly straightforward. However, note that this
+comes at a cost: the proof script is unreadable because the intermediate
+proof states are invisible, and we rely on the (possibly brittle) magic of
+\isa{auto} (\isa{simp{\isaliteral{5F}{\isacharunderscore}}all} will not do --- try it) to split the subgoals
+of the induction up in such a way that case distinction on \isa{bs} makes
+sense and solves the proof.
+
+\begin{exercise}
+ Modify \isa{update} (and its type) such that it allows both insertion and
+ deletion of entries with a single function. Prove the corresponding version
+ of the main theorem above.
+ Optimize your function such that it shrinks tries after
+ deletion if possible.
+\end{exercise}
+
+\begin{exercise}
+ Write an improved version of \isa{update} that does not suffer from the
+ space leak (pointed out above) caused by not deleting overwritten entries
+ from the association list. Prove the main theorem for your improved
+ \isa{update}.
+\end{exercise}
+
+\begin{exercise}
+ Conceptually, each node contains a mapping from letters to optional
+ subtries. Above we have implemented this by means of an association
+ list. Replay the development replacing \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{27}{\isacharprime}}v{\isaliteral{29}{\isacharparenright}}\ trie{\isaliteral{29}{\isacharparenright}}\ list}
+ with \isa{{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{27}{\isacharprime}}v{\isaliteral{29}{\isacharparenright}}\ trie\ option}.
+\end{exercise}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+\end{isabellebody}%
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "root"
+%%% End: