src/HOL/BNF/Tools/bnf_lfp.ML
changeset 55058 4e700eb471d4
parent 55057 6b0fcbeebaba
child 55059 ef2e0fb783c6
--- a/src/HOL/BNF/Tools/bnf_lfp.ML	Mon Jan 20 18:24:55 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1881 +0,0 @@
-(*  Title:      HOL/BNF/Tools/bnf_lfp.ML
-    Author:     Dmitriy Traytel, TU Muenchen
-    Author:     Andrei Popescu, TU Muenchen
-    Copyright   2012
-
-Datatype construction.
-*)
-
-signature BNF_LFP =
-sig
-  val construct_lfp: mixfix list -> binding list -> binding list -> binding list list ->
-    binding list -> (string * sort) list -> typ list * typ list list -> BNF_Def.bnf list ->
-    local_theory -> BNF_FP_Util.fp_result * local_theory
-end;
-
-structure BNF_LFP : BNF_LFP =
-struct
-
-open BNF_Def
-open BNF_Util
-open BNF_Tactics
-open BNF_Comp
-open BNF_FP_Util
-open BNF_FP_Def_Sugar
-open BNF_LFP_Rec_Sugar
-open BNF_LFP_Util
-open BNF_LFP_Tactics
-
-(*all BNFs have the same lives*)
-fun construct_lfp mixfixes map_bs rel_bs set_bss0 bs resBs (resDs, Dss) bnfs lthy =
-  let
-    val time = time lthy;
-    val timer = time (Timer.startRealTimer ());
-
-    val live = live_of_bnf (hd bnfs);
-    val n = length bnfs; (*active*)
-    val ks = 1 upto n;
-    val m = live - n; (*passive, if 0 don't generate a new BNF*)
-
-    val note_all = Config.get lthy bnf_note_all;
-    val b_names = map Binding.name_of bs;
-    val b_name = mk_common_name b_names;
-    val b = Binding.name b_name;
-    val mk_internal_b = Binding.name #> Binding.prefix true b_name #> Binding.conceal;
-    fun mk_internal_bs name =
-      map (fn b =>
-        Binding.prefix true b_name (Binding.prefix_name (name ^ "_") b) |> Binding.conceal) bs;
-    val external_bs = map2 (Binding.prefix false) b_names bs
-      |> note_all = false ? map Binding.conceal;
-
-    (* TODO: check if m, n, etc., are sane *)
-
-    val deads = fold (union (op =)) Dss resDs;
-    val names_lthy = fold Variable.declare_typ deads lthy;
-    val passives = map fst (subtract (op = o apsnd TFree) deads resBs);
-
-    (* tvars *)
-    val (((((passiveAs, activeAs), passiveBs), activeBs), passiveCs), activeCs) =
-      names_lthy
-      |> variant_tfrees passives
-      ||>> mk_TFrees n
-      ||>> variant_tfrees passives
-      ||>> mk_TFrees n
-      ||>> variant_tfrees passives
-      ||>> mk_TFrees n
-      |> fst;
-
-    val allAs = passiveAs @ activeAs;
-    val allBs' = passiveBs @ activeBs;
-    val Ass = replicate n allAs;
-    val allBs = passiveAs @ activeBs;
-    val Bss = replicate n allBs;
-    val allCs = passiveAs @ activeCs;
-    val allCs' = passiveBs @ activeCs;
-    val Css' = replicate n allCs';
-
-    (* types *)
-    val dead_poss =
-      map (fn x => if member (op =) deads (TFree x) then SOME (TFree x) else NONE) resBs;
-    fun mk_param NONE passive = (hd passive, tl passive)
-      | mk_param (SOME a) passive = (a, passive);
-    val mk_params = fold_map mk_param dead_poss #> fst;
-
-    fun mk_FTs Ts = map2 (fn Ds => mk_T_of_bnf Ds Ts) Dss bnfs;
-    val (params, params') = `(map Term.dest_TFree) (mk_params passiveAs);
-    val FTsAs = mk_FTs allAs;
-    val FTsBs = mk_FTs allBs;
-    val FTsCs = mk_FTs allCs;
-    val ATs = map HOLogic.mk_setT passiveAs;
-    val BTs = map HOLogic.mk_setT activeAs;
-    val B'Ts = map HOLogic.mk_setT activeBs;
-    val B''Ts = map HOLogic.mk_setT activeCs;
-    val sTs = map2 (curry op -->) FTsAs activeAs;
-    val s'Ts = map2 (curry op -->) FTsBs activeBs;
-    val s''Ts = map2 (curry op -->) FTsCs activeCs;
-    val fTs = map2 (curry op -->) activeAs activeBs;
-    val inv_fTs = map2 (curry op -->) activeBs activeAs;
-    val self_fTs = map2 (curry op -->) activeAs activeAs;
-    val gTs = map2 (curry op -->) activeBs activeCs;
-    val all_gTs = map2 (curry op -->) allBs allCs';
-    val prodBsAs = map2 (curry HOLogic.mk_prodT) activeBs activeAs;
-    val prodFTs = mk_FTs (passiveAs @ prodBsAs);
-    val prod_sTs = map2 (curry op -->) prodFTs activeAs;
-
-    (* terms *)
-    val mapsAsAs = map4 mk_map_of_bnf Dss Ass Ass bnfs;
-    val mapsAsBs = map4 mk_map_of_bnf Dss Ass Bss bnfs;
-    val mapsBsAs = map4 mk_map_of_bnf Dss Bss Ass bnfs;
-    val mapsBsCs' = map4 mk_map_of_bnf Dss Bss Css' bnfs;
-    val mapsAsCs' = map4 mk_map_of_bnf Dss Ass Css' bnfs;
-    val map_fsts = map4 mk_map_of_bnf Dss (replicate n (passiveAs @ prodBsAs)) Bss bnfs;
-    val map_fsts_rev = map4 mk_map_of_bnf Dss Bss (replicate n (passiveAs @ prodBsAs)) bnfs;
-    fun mk_setss Ts = map3 mk_sets_of_bnf (map (replicate live) Dss)
-      (map (replicate live) (replicate n Ts)) bnfs;
-    val setssAs = mk_setss allAs;
-    val bd0s = map3 mk_bd_of_bnf Dss Ass bnfs;
-    val bds =
-      map3 (fn bd0 => fn Ds => fn bnf => mk_csum bd0
-        (mk_card_of (HOLogic.mk_UNIV
-          (mk_T_of_bnf Ds (replicate live (fst (dest_relT (fastype_of bd0)))) bnf))))
-      bd0s Dss bnfs;
-    val witss = map wits_of_bnf bnfs;
-
-    val (((((((((((((((((((zs, zs'), As), Bs), Bs_copy), B's), B''s), ss), prod_ss), s's), s''s),
-      fs), fs_copy), inv_fs), self_fs), gs), all_gs), (xFs, xFs')), (yFs, yFs')),
-      names_lthy) = lthy
-      |> mk_Frees' "z" activeAs
-      ||>> mk_Frees "A" ATs
-      ||>> mk_Frees "B" BTs
-      ||>> mk_Frees "B" BTs
-      ||>> mk_Frees "B'" B'Ts
-      ||>> mk_Frees "B''" B''Ts
-      ||>> mk_Frees "s" sTs
-      ||>> mk_Frees "prods" prod_sTs
-      ||>> mk_Frees "s'" s'Ts
-      ||>> mk_Frees "s''" s''Ts
-      ||>> mk_Frees "f" fTs
-      ||>> mk_Frees "f" fTs
-      ||>> mk_Frees "f" inv_fTs
-      ||>> mk_Frees "f" self_fTs
-      ||>> mk_Frees "g" gTs
-      ||>> mk_Frees "g" all_gTs
-      ||>> mk_Frees' "x" FTsAs
-      ||>> mk_Frees' "y" FTsBs;
-
-    val passive_UNIVs = map HOLogic.mk_UNIV passiveAs;
-    val active_UNIVs = map HOLogic.mk_UNIV activeAs;
-    val prod_UNIVs = map HOLogic.mk_UNIV prodBsAs;
-    val passive_ids = map HOLogic.id_const passiveAs;
-    val active_ids = map HOLogic.id_const activeAs;
-    val fsts = map fst_const prodBsAs;
-
-    (* thms *)
-    val bd0_card_orders = map bd_card_order_of_bnf bnfs;
-    val bd0_Card_orders = map bd_Card_order_of_bnf bnfs;
-    val bd0_Cinfinites = map bd_Cinfinite_of_bnf bnfs;
-    val set_bd0ss = map set_bd_of_bnf bnfs;
-
-    val bd_card_orders =
-      map (fn thm => @{thm card_order_csum} OF [thm, @{thm card_of_card_order_on}]) bd0_card_orders;
-    val bd_Card_order = @{thm Card_order_csum};
-    val bd_Card_orders = replicate n bd_Card_order;
-    val bd_Cinfinites = map (fn thm => thm RS @{thm Cinfinite_csum1}) bd0_Cinfinites;
-    val bd_Cnotzeros = map (fn thm => thm RS @{thm Cinfinite_Cnotzero}) bd_Cinfinites;
-    val bd_Cinfinite = hd bd_Cinfinites;
-    val bd_Cnotzero = hd bd_Cnotzeros;
-    val set_bdss =
-      map2 (fn set_bd0s => fn bd0_Card_order =>
-        map (fn thm => ctrans OF [thm, bd0_Card_order RS @{thm ordLeq_csum1}]) set_bd0s)
-      set_bd0ss bd0_Card_orders;
-    val in_bds = map in_bd_of_bnf bnfs;
-    val sym_map_comps = map (fn bnf => map_comp0_of_bnf bnf RS sym) bnfs;
-    val map_comps = map map_comp_of_bnf bnfs;
-    val map_cong0s = map map_cong0_of_bnf bnfs;
-    val map_id0s = map map_id0_of_bnf bnfs;
-    val map_ids = map map_id_of_bnf bnfs;
-    val set_mapss = map set_map_of_bnf bnfs;
-    val rel_mono_strongs = map rel_mono_strong_of_bnf bnfs;
-    val rel_OOs = map rel_OO_of_bnf bnfs;
-
-    val timer = time (timer "Extracted terms & thms");
-
-    (* nonemptiness check *)
-    fun new_wit X (wit: nonemptiness_witness) = subset (op =) (#I wit, (0 upto m - 1) @ map snd X);
-
-    val all = m upto m + n - 1;
-
-    fun enrich X = map_filter (fn i =>
-      (case find_first (fn (_, i') => i = i') X of
-        NONE =>
-          (case find_index (new_wit X) (nth witss (i - m)) of
-            ~1 => NONE
-          | j => SOME (j, i))
-      | SOME ji => SOME ji)) all;
-    val reachable = fixpoint (op =) enrich [];
-    val _ = (case subtract (op =) (map snd reachable) all of
-        [] => ()
-      | i :: _ => error ("Cannot define empty datatype " ^ quote (Binding.name_of (nth bs (i - m)))));
-
-    val wit_thms = flat (map2 (fn bnf => fn (j, _) => nth (wit_thmss_of_bnf bnf) j) bnfs reachable);
-
-    val timer = time (timer "Checked nonemptiness");
-
-    (* derived thms *)
-
-    (*map g1 ... gm g(m+1) ... g(m+n) (map id ... id f(m+1) ... f(m+n) x) =
-      map g1 ... gm (g(m+1) o f(m+1)) ... (g(m+n) o f(m+n)) x*)
-    fun mk_map_comp_id x mapAsBs mapBsCs mapAsCs map_comp0 =
-      let
-        val lhs = Term.list_comb (mapBsCs, all_gs) $
-          (Term.list_comb (mapAsBs, passive_ids @ fs) $ x);
-        val rhs = Term.list_comb (mapAsCs,
-          take m all_gs @ map HOLogic.mk_comp (drop m all_gs ~~ fs)) $ x;
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (x :: fs @ all_gs) (mk_Trueprop_eq (lhs, rhs)))
-          (K (mk_map_comp_id_tac map_comp0))
-        |> Thm.close_derivation
-      end;
-
-    val map_comp_id_thms = map5 mk_map_comp_id xFs mapsAsBs mapsBsCs' mapsAsCs' map_comps;
-
-    (*forall a : set(m+1) x. f(m+1) a = a; ...; forall a : set(m+n) x. f(m+n) a = a ==>
-      map id ... id f(m+1) ... f(m+n) x = x*)
-    fun mk_map_cong0L x mapAsAs sets map_cong0 map_id =
-      let
-        fun mk_prem set f z z' = HOLogic.mk_Trueprop
-          (mk_Ball (set $ x) (Term.absfree z' (HOLogic.mk_eq (f $ z, z))));
-        val prems = map4 mk_prem (drop m sets) self_fs zs zs';
-        val goal = mk_Trueprop_eq (Term.list_comb (mapAsAs, passive_ids @ self_fs) $ x, x);
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (x :: self_fs) (Logic.list_implies (prems, goal)))
-          (K (mk_map_cong0L_tac m map_cong0 map_id))
-        |> Thm.close_derivation
-      end;
-
-    val map_cong0L_thms = map5 mk_map_cong0L xFs mapsAsAs setssAs map_cong0s map_ids;
-    val in_mono'_thms = map (fn bnf => in_mono_of_bnf bnf OF (replicate m subset_refl)) bnfs;
-    val in_cong'_thms = map (fn bnf => in_cong_of_bnf bnf OF (replicate m refl)) bnfs;
-
-    val timer = time (timer "Derived simple theorems");
-
-    (* algebra *)
-
-    val alg_bind = mk_internal_b algN;
-    val alg_name = Binding.name_of alg_bind;
-    val alg_def_bind = (Thm.def_binding alg_bind, []);
-
-    (*forall i = 1 ... n: (\<forall>x \<in> Fi_in A1 .. Am B1 ... Bn. si x \<in> Bi)*)
-    val alg_spec =
-      let
-        val algT = Library.foldr (op -->) (ATs @ BTs @ sTs, HOLogic.boolT);
-
-        val ins = map3 mk_in (replicate n (As @ Bs)) setssAs FTsAs;
-        fun mk_alg_conjunct B s X x x' =
-          mk_Ball X (Term.absfree x' (HOLogic.mk_mem (s $ x, B)));
-
-        val lhs = Term.list_comb (Free (alg_name, algT), As @ Bs @ ss);
-        val rhs = Library.foldr1 HOLogic.mk_conj (map5 mk_alg_conjunct Bs ss ins xFs xFs')
-      in
-        mk_Trueprop_eq (lhs, rhs)
-      end;
-
-    val ((alg_free, (_, alg_def_free)), (lthy, lthy_old)) =
-        lthy
-        |> Specification.definition (SOME (alg_bind, NONE, NoSyn), (alg_def_bind, alg_spec))
-        ||> `Local_Theory.restore;
-
-    val phi = Proof_Context.export_morphism lthy_old lthy;
-    val alg = fst (Term.dest_Const (Morphism.term phi alg_free));
-    val alg_def = Morphism.thm phi alg_def_free;
-
-    fun mk_alg As Bs ss =
-      let
-        val args = As @ Bs @ ss;
-        val Ts = map fastype_of args;
-        val algT = Library.foldr (op -->) (Ts, HOLogic.boolT);
-      in
-        Term.list_comb (Const (alg, algT), args)
-      end;
-
-    val alg_set_thms =
-      let
-        val alg_prem = HOLogic.mk_Trueprop (mk_alg As Bs ss);
-        fun mk_prem x set B = HOLogic.mk_Trueprop (mk_leq (set $ x) B);
-        fun mk_concl s x B = HOLogic.mk_Trueprop (HOLogic.mk_mem (s $ x, B));
-        val premss = map2 ((fn x => fn sets =>  map2 (mk_prem x) sets (As @ Bs))) xFs setssAs;
-        val concls = map3 mk_concl ss xFs Bs;
-        val goals = map3 (fn x => fn prems => fn concl =>
-          fold_rev Logic.all (x :: As @ Bs @ ss)
-            (Logic.list_implies (alg_prem :: prems, concl))) xFs premss concls;
-      in
-        map (fn goal =>
-          Goal.prove_sorry lthy [] [] goal (K (mk_alg_set_tac alg_def)) |> Thm.close_derivation)
-        goals
-      end;
-
-    fun mk_talg ATs BTs = mk_alg (map HOLogic.mk_UNIV ATs) (map HOLogic.mk_UNIV BTs);
-
-    val talg_thm =
-      let
-        val goal = fold_rev Logic.all ss
-          (HOLogic.mk_Trueprop (mk_talg passiveAs activeAs ss))
-      in
-        Goal.prove_sorry lthy [] [] goal
-          (K (stac alg_def 1 THEN CONJ_WRAP (K (EVERY' [rtac ballI, rtac UNIV_I] 1)) ss))
-        |> Thm.close_derivation
-      end;
-
-    val timer = time (timer "Algebra definition & thms");
-
-    val alg_not_empty_thms =
-      let
-        val alg_prem =
-          HOLogic.mk_Trueprop (mk_alg passive_UNIVs Bs ss);
-        val concls = map (HOLogic.mk_Trueprop o mk_not_empty) Bs;
-        val goals =
-          map (fn concl =>
-            fold_rev Logic.all (Bs @ ss) (Logic.mk_implies (alg_prem, concl))) concls;
-      in
-        map2 (fn goal => fn alg_set =>
-          Goal.prove_sorry lthy [] []
-            goal (K (mk_alg_not_empty_tac lthy alg_set alg_set_thms wit_thms))
-          |> Thm.close_derivation)
-        goals alg_set_thms
-      end;
-
-    val timer = time (timer "Proved nonemptiness");
-
-    (* morphism *)
-
-    val mor_bind = mk_internal_b morN;
-    val mor_name = Binding.name_of mor_bind;
-    val mor_def_bind = (Thm.def_binding mor_bind, []);
-
-    (*fbetw) forall i = 1 ... n: (\<forall>x \<in> Bi. f x \<in> B'i)*)
-    (*mor) forall i = 1 ... n: (\<forall>x \<in> Fi_in UNIV ... UNIV B1 ... Bn.
-       f (s1 x) = s1' (Fi_map id ... id f1 ... fn x))*)
-    val mor_spec =
-      let
-        val morT = Library.foldr (op -->) (BTs @ sTs @ B'Ts @ s'Ts @ fTs, HOLogic.boolT);
-
-        fun mk_fbetw f B1 B2 z z' =
-          mk_Ball B1 (Term.absfree z' (HOLogic.mk_mem (f $ z, B2)));
-        fun mk_mor sets mapAsBs f s s' T x x' =
-          mk_Ball (mk_in (passive_UNIVs @ Bs) sets T)
-            (Term.absfree x' (HOLogic.mk_eq (f $ (s $ x), s' $
-              (Term.list_comb (mapAsBs, passive_ids @ fs) $ x))));
-        val lhs = Term.list_comb (Free (mor_name, morT), Bs @ ss @ B's @ s's @ fs);
-        val rhs = HOLogic.mk_conj
-          (Library.foldr1 HOLogic.mk_conj (map5 mk_fbetw fs Bs B's zs zs'),
-          Library.foldr1 HOLogic.mk_conj
-            (map8 mk_mor setssAs mapsAsBs fs ss s's FTsAs xFs xFs'))
-      in
-        mk_Trueprop_eq (lhs, rhs)
-      end;
-
-    val ((mor_free, (_, mor_def_free)), (lthy, lthy_old)) =
-        lthy
-        |> Specification.definition (SOME (mor_bind, NONE, NoSyn), (mor_def_bind, mor_spec))
-        ||> `Local_Theory.restore;
-
-    val phi = Proof_Context.export_morphism lthy_old lthy;
-    val mor = fst (Term.dest_Const (Morphism.term phi mor_free));
-    val mor_def = Morphism.thm phi mor_def_free;
-
-    fun mk_mor Bs1 ss1 Bs2 ss2 fs =
-      let
-        val args = Bs1 @ ss1 @ Bs2 @ ss2 @ fs;
-        val Ts = map fastype_of (Bs1 @ ss1 @ Bs2 @ ss2 @ fs);
-        val morT = Library.foldr (op -->) (Ts, HOLogic.boolT);
-      in
-        Term.list_comb (Const (mor, morT), args)
-      end;
-
-    val (mor_image_thms, morE_thms) =
-      let
-        val prem = HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs);
-        fun mk_image_goal f B1 B2 = fold_rev Logic.all (Bs @ ss @ B's @ s's @ fs)
-          (Logic.mk_implies (prem, HOLogic.mk_Trueprop (mk_leq (mk_image f $ B1) B2)));
-        val image_goals = map3 mk_image_goal fs Bs B's;
-        fun mk_elim_prem sets x T = HOLogic.mk_Trueprop
-          (HOLogic.mk_mem (x, mk_in (passive_UNIVs @ Bs) sets T));
-        fun mk_elim_goal sets mapAsBs f s s' x T =
-          fold_rev Logic.all (x :: Bs @ ss @ B's @ s's @ fs)
-            (Logic.list_implies ([prem, mk_elim_prem sets x T],
-              mk_Trueprop_eq (f $ (s $ x), s' $ Term.list_comb (mapAsBs, passive_ids @ fs @ [x]))));
-        val elim_goals = map7 mk_elim_goal setssAs mapsAsBs fs ss s's xFs FTsAs;
-        fun prove goal =
-          Goal.prove_sorry lthy [] [] goal (K (mk_mor_elim_tac mor_def)) |> Thm.close_derivation;
-      in
-        (map prove image_goals, map prove elim_goals)
-      end;
-
-    val mor_incl_thm =
-      let
-        val prems = map2 (HOLogic.mk_Trueprop oo mk_leq) Bs Bs_copy;
-        val concl = HOLogic.mk_Trueprop (mk_mor Bs ss Bs_copy ss active_ids);
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (Bs @ ss @ Bs_copy) (Logic.list_implies (prems, concl)))
-          (K (mk_mor_incl_tac mor_def map_ids))
-        |> Thm.close_derivation
-      end;
-
-    val mor_comp_thm =
-      let
-        val prems =
-          [HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs),
-           HOLogic.mk_Trueprop (mk_mor B's s's B''s s''s gs)];
-        val concl =
-          HOLogic.mk_Trueprop (mk_mor Bs ss B''s s''s (map2 (curry HOLogic.mk_comp) gs fs));
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (Bs @ ss @ B's @ s's @ B''s @ s''s @ fs @ gs)
-             (Logic.list_implies (prems, concl)))
-          (K (mk_mor_comp_tac mor_def set_mapss map_comp_id_thms))
-        |> Thm.close_derivation
-      end;
-
-    val mor_inv_thm =
-      let
-        fun mk_inv_prem f inv_f B B' = HOLogic.mk_conj (mk_leq (mk_image inv_f $ B') B,
-          HOLogic.mk_conj (mk_inver inv_f f B, mk_inver f inv_f B'));
-        val prems = map HOLogic.mk_Trueprop
-          ([mk_mor Bs ss B's s's fs,
-          mk_alg passive_UNIVs Bs ss,
-          mk_alg passive_UNIVs B's s's] @
-          map4 mk_inv_prem fs inv_fs Bs B's);
-        val concl = HOLogic.mk_Trueprop (mk_mor B's s's Bs ss inv_fs);
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (Bs @ ss @ B's @ s's @ fs @ inv_fs)
-            (Logic.list_implies (prems, concl)))
-          (K (mk_mor_inv_tac alg_def mor_def set_mapss morE_thms map_comp_id_thms map_cong0L_thms))
-        |> Thm.close_derivation
-      end;
-
-    val mor_cong_thm =
-      let
-        val prems = map HOLogic.mk_Trueprop
-         (map2 (curry HOLogic.mk_eq) fs_copy fs @ [mk_mor Bs ss B's s's fs])
-        val concl = HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs_copy);
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (Bs @ ss @ B's @ s's @ fs @ fs_copy)
-             (Logic.list_implies (prems, concl)))
-          (K ((hyp_subst_tac lthy THEN' atac) 1))
-        |> Thm.close_derivation
-      end;
-
-    val mor_str_thm =
-      let
-        val maps = map2 (fn Ds => fn bnf => Term.list_comb
-          (mk_map_of_bnf Ds (passiveAs @ FTsAs) allAs bnf, passive_ids @ ss)) Dss bnfs;
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all ss (HOLogic.mk_Trueprop
-            (mk_mor (map HOLogic.mk_UNIV FTsAs) maps active_UNIVs ss ss)))
-          (K (mk_mor_str_tac ks mor_def))
-        |> Thm.close_derivation
-      end;
-
-    val mor_convol_thm =
-      let
-        val maps = map3 (fn s => fn prod_s => fn mapx =>
-          mk_convol (HOLogic.mk_comp (s, Term.list_comb (mapx, passive_ids @ fsts)), prod_s))
-          s's prod_ss map_fsts;
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (s's @ prod_ss) (HOLogic.mk_Trueprop
-            (mk_mor prod_UNIVs maps (map HOLogic.mk_UNIV activeBs) s's fsts)))
-          (K (mk_mor_convol_tac ks mor_def))
-        |> Thm.close_derivation
-      end;
-
-    val mor_UNIV_thm =
-      let
-        fun mk_conjunct mapAsBs f s s' = HOLogic.mk_eq
-            (HOLogic.mk_comp (f, s),
-            HOLogic.mk_comp (s', Term.list_comb (mapAsBs, passive_ids @ fs)));
-        val lhs = mk_mor active_UNIVs ss (map HOLogic.mk_UNIV activeBs) s's fs;
-        val rhs = Library.foldr1 HOLogic.mk_conj (map4 mk_conjunct mapsAsBs fs ss s's);
-      in
-        Goal.prove_sorry lthy [] [] (fold_rev Logic.all (ss @ s's @ fs) (mk_Trueprop_eq (lhs, rhs)))
-          (K (mk_mor_UNIV_tac m morE_thms mor_def))
-        |> Thm.close_derivation
-      end;
-
-    val timer = time (timer "Morphism definition & thms");
-
-    (* isomorphism *)
-
-    (*mor Bs1 ss1 Bs2 ss2 fs \<and> (\<exists>gs. mor Bs2 ss2 Bs1 ss1 fs \<and>
-       forall i = 1 ... n. (inver gs[i] fs[i] Bs1[i] \<and> inver fs[i] gs[i] Bs2[i]))*)
-    fun mk_iso Bs1 ss1 Bs2 ss2 fs gs =
-      let
-        val ex_inv_mor = list_exists_free gs
-          (HOLogic.mk_conj (mk_mor Bs2 ss2 Bs1 ss1 gs,
-            Library.foldr1 HOLogic.mk_conj (map2 (curry HOLogic.mk_conj)
-              (map3 mk_inver gs fs Bs1) (map3 mk_inver fs gs Bs2))));
-      in
-        HOLogic.mk_conj (mk_mor Bs1 ss1 Bs2 ss2 fs, ex_inv_mor)
-      end;
-
-    val iso_alt_thm =
-      let
-        val prems = map HOLogic.mk_Trueprop
-         [mk_alg passive_UNIVs Bs ss,
-         mk_alg passive_UNIVs B's s's]
-        val concl = mk_Trueprop_eq (mk_iso Bs ss B's s's fs inv_fs,
-          HOLogic.mk_conj (mk_mor Bs ss B's s's fs,
-            Library.foldr1 HOLogic.mk_conj (map3 mk_bij_betw fs Bs B's)));
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (Bs @ ss @ B's @ s's @ fs) (Logic.list_implies (prems, concl)))
-          (K (mk_iso_alt_tac mor_image_thms mor_inv_thm))
-        |> Thm.close_derivation
-      end;
-
-    val timer = time (timer "Isomorphism definition & thms");
-
-    (* algebra copies *)
-
-    val (copy_alg_thm, ex_copy_alg_thm) =
-      let
-        val prems = map HOLogic.mk_Trueprop
-         (mk_alg passive_UNIVs Bs ss :: map3 mk_bij_betw inv_fs B's Bs);
-        val inver_prems = map HOLogic.mk_Trueprop
-          (map3 mk_inver inv_fs fs Bs @ map3 mk_inver fs inv_fs B's);
-        val all_prems = prems @ inver_prems;
-        fun mk_s f s mapT y y' = Term.absfree y' (f $ (s $
-          (Term.list_comb (mapT, passive_ids @ inv_fs) $ y)));
-
-        val alg = HOLogic.mk_Trueprop
-          (mk_alg passive_UNIVs B's (map5 mk_s fs ss mapsBsAs yFs yFs'));
-        val copy_str_thm = Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (Bs @ ss @ B's @ inv_fs @ fs)
-            (Logic.list_implies (all_prems, alg)))
-          (K (mk_copy_str_tac set_mapss alg_def alg_set_thms))
-          |> Thm.close_derivation;
-
-        val iso = HOLogic.mk_Trueprop
-          (mk_iso B's (map5 mk_s fs ss mapsBsAs yFs yFs') Bs ss inv_fs fs_copy);
-        val copy_alg_thm = Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (Bs @ ss @ B's @ inv_fs @ fs)
-            (Logic.list_implies (all_prems, iso)))
-          (K (mk_copy_alg_tac set_mapss alg_set_thms mor_def iso_alt_thm copy_str_thm))
-          |> Thm.close_derivation;
-
-        val ex = HOLogic.mk_Trueprop
-          (list_exists_free s's
-            (HOLogic.mk_conj (mk_alg passive_UNIVs B's s's,
-              mk_iso B's s's Bs ss inv_fs fs_copy)));
-        val ex_copy_alg_thm = Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (Bs @ ss @ B's @ inv_fs @ fs)
-             (Logic.list_implies (prems, ex)))
-          (K (mk_ex_copy_alg_tac n copy_str_thm copy_alg_thm))
-          |> Thm.close_derivation;
-      in
-        (copy_alg_thm, ex_copy_alg_thm)
-      end;
-
-    val timer = time (timer "Copy thms");
-
-
-    (* bounds *)
-
-    val sum_Card_order = if n = 1 then bd_Card_order else @{thm Card_order_csum};
-    val sum_Cnotzero = if n = 1 then bd_Cnotzero else bd_Cnotzero RS @{thm csum_Cnotzero1};
-    val sum_Cinfinite = if n = 1 then bd_Cinfinite else bd_Cinfinite RS @{thm Cinfinite_csum1};
-    fun mk_set_bd_sums i bd_Card_order bds =
-      if n = 1 then bds
-      else map (fn thm => bd_Card_order RS mk_ordLeq_csum n i thm) bds;
-    val set_bd_sumss = map3 mk_set_bd_sums ks bd_Card_orders set_bdss;
-
-    fun mk_in_bd_sum i Co Cnz bd =
-      if n = 1 then bd
-      else Cnz RS ((Co RS mk_ordLeq_csum n i (Co RS @{thm ordLeq_refl})) RS
-        (bd RS @{thm ordLeq_transitive[OF _ cexp_mono2_Cnotzero[OF _ Card_order_csum]]}));
-    val in_bd_sums = map4 mk_in_bd_sum ks bd_Card_orders bd_Cnotzeros in_bds;
-
-    val sum_bd = Library.foldr1 (uncurry mk_csum) bds;
-    val suc_bd = mk_cardSuc sum_bd;
-    val field_suc_bd = mk_Field suc_bd;
-    val suc_bdT = fst (dest_relT (fastype_of suc_bd));
-    fun mk_Asuc_bd [] = mk_cexp ctwo suc_bd
-      | mk_Asuc_bd As =
-        mk_cexp (mk_csum (Library.foldr1 (uncurry mk_csum) (map mk_card_of As)) ctwo) suc_bd;
-
-    val suc_bd_Card_order = if n = 1 then bd_Card_order RS @{thm cardSuc_Card_order}
-      else @{thm cardSuc_Card_order[OF Card_order_csum]};
-    val suc_bd_Cinfinite = if n = 1 then bd_Cinfinite RS @{thm Cinfinite_cardSuc}
-      else bd_Cinfinite RS @{thm Cinfinite_cardSuc[OF Cinfinite_csum1]};
-    val suc_bd_Cnotzero = suc_bd_Cinfinite RS @{thm Cinfinite_Cnotzero};
-    val suc_bd_worel = suc_bd_Card_order RS @{thm Card_order_wo_rel}
-    val basis_Asuc = if m = 0 then @{thm ordLeq_refl[OF Card_order_ctwo]}
-        else @{thm ordLeq_csum2[OF Card_order_ctwo]};
-    val Asuc_bd_Cinfinite = suc_bd_Cinfinite RS (basis_Asuc RS @{thm Cinfinite_cexp});
-
-    val suc_bd_Asuc_bd = @{thm ordLess_ordLeq_trans[OF ordLess_ctwo_cexp cexp_mono1]} OF
-      [suc_bd_Card_order, basis_Asuc, suc_bd_Card_order];
-
-    val Asuc_bdT = fst (dest_relT (fastype_of (mk_Asuc_bd As)));
-    val II_BTs = replicate n (HOLogic.mk_setT Asuc_bdT);
-    val II_sTs = map2 (fn Ds => fn bnf =>
-      mk_T_of_bnf Ds (passiveAs @ replicate n Asuc_bdT) bnf --> Asuc_bdT) Dss bnfs;
-
-    val (((((((idxs, Asi_name), (idx, idx')), (jdx, jdx')), II_Bs), II_ss), Asuc_fs),
-      names_lthy) = names_lthy
-      |> mk_Frees "i" (replicate n suc_bdT)
-      ||>> (fn ctxt => apfst the_single (mk_fresh_names ctxt 1 "Asi"))
-      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "i") suc_bdT
-      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "j") suc_bdT
-      ||>> mk_Frees "IIB" II_BTs
-      ||>> mk_Frees "IIs" II_sTs
-      ||>> mk_Frees "f" (map (fn T => Asuc_bdT --> T) activeAs);
-
-    val suc_bd_limit_thm =
-      let
-        val prem = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
-          (map (fn idx => HOLogic.mk_mem (idx, field_suc_bd)) idxs));
-        fun mk_conjunct idx = HOLogic.mk_conj (mk_not_eq idx jdx,
-          HOLogic.mk_mem (HOLogic.mk_prod (idx, jdx), suc_bd));
-        val concl = HOLogic.mk_Trueprop (mk_Bex field_suc_bd
-          (Term.absfree jdx' (Library.foldr1 HOLogic.mk_conj (map mk_conjunct idxs))));
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all idxs (Logic.list_implies ([prem], concl)))
-          (K (mk_bd_limit_tac n suc_bd_Cinfinite))
-        |> Thm.close_derivation
-      end;
-
-    val timer = time (timer "Bounds");
-
-
-    (* minimal algebra *)
-
-    fun mk_minG Asi i k = mk_UNION (mk_underS suc_bd $ i)
-      (Term.absfree jdx' (mk_nthN n (Asi $ jdx) k));
-
-    fun mk_minH_component As Asi i sets Ts s k =
-      HOLogic.mk_binop @{const_name "sup"}
-      (mk_minG Asi i k, mk_image s $ mk_in (As @ map (mk_minG Asi i) ks) sets Ts);
-
-    fun mk_min_algs As ss =
-      let
-        val BTs = map (range_type o fastype_of) ss;
-        val Ts = map (HOLogic.dest_setT o fastype_of) As @ BTs;
-        val (Asi, Asi') = `Free (Asi_name, suc_bdT -->
-          Library.foldr1 HOLogic.mk_prodT (map HOLogic.mk_setT BTs));
-      in
-         mk_worec suc_bd (Term.absfree Asi' (Term.absfree idx' (HOLogic.mk_tuple
-           (map4 (mk_minH_component As Asi idx) (mk_setss Ts) (mk_FTs Ts) ss ks))))
-      end;
-
-    val (min_algs_thms, min_algs_mono_thms, card_of_min_algs_thm, least_min_algs_thm) =
-      let
-        val i_field = HOLogic.mk_mem (idx, field_suc_bd);
-        val min_algs = mk_min_algs As ss;
-        val min_algss = map (fn k => mk_nthN n (min_algs $ idx) k) ks;
-
-        val concl = HOLogic.mk_Trueprop
-          (HOLogic.mk_eq (min_algs $ idx, HOLogic.mk_tuple
-            (map4 (mk_minH_component As min_algs idx) setssAs FTsAs ss ks)));
-        val goal = fold_rev Logic.all (idx :: As @ ss)
-          (Logic.mk_implies (HOLogic.mk_Trueprop i_field, concl));
-
-        val min_algs_thm = Goal.prove_sorry lthy [] [] goal
-          (K (mk_min_algs_tac suc_bd_worel in_cong'_thms))
-          |> Thm.close_derivation;
-
-        val min_algs_thms = map (fn k => min_algs_thm RS mk_nthI n k) ks;
-
-        fun mk_mono_goal min_alg =
-          fold_rev Logic.all (As @ ss) (HOLogic.mk_Trueprop (mk_relChain suc_bd
-            (Term.absfree idx' min_alg)));
-
-        val monos =
-          map2 (fn goal => fn min_algs =>
-            Goal.prove_sorry lthy [] [] goal (K (mk_min_algs_mono_tac lthy min_algs))
-            |> Thm.close_derivation)
-          (map mk_mono_goal min_algss) min_algs_thms;
-
-        val Asuc_bd = mk_Asuc_bd As;
-
-        fun mk_card_conjunct min_alg = mk_ordLeq (mk_card_of min_alg) Asuc_bd;
-        val card_conjunction = Library.foldr1 HOLogic.mk_conj (map mk_card_conjunct min_algss);
-        val card_cT = certifyT lthy suc_bdT;
-        val card_ct = certify lthy (Term.absfree idx' card_conjunction);
-
-        val card_of = singleton (Proof_Context.export names_lthy lthy)
-          (Goal.prove_sorry lthy [] []
-            (HOLogic.mk_Trueprop (HOLogic.mk_imp (i_field, card_conjunction)))
-            (K (mk_min_algs_card_of_tac card_cT card_ct
-              m suc_bd_worel min_algs_thms in_bd_sums
-              sum_Card_order sum_Cnotzero suc_bd_Card_order suc_bd_Cinfinite suc_bd_Cnotzero
-              suc_bd_Asuc_bd Asuc_bd_Cinfinite)))
-          |> Thm.close_derivation;
-
-        val least_prem = HOLogic.mk_Trueprop (mk_alg As Bs ss);
-        val least_conjunction = Library.foldr1 HOLogic.mk_conj (map2 mk_leq min_algss Bs);
-        val least_cT = certifyT lthy suc_bdT;
-        val least_ct = certify lthy (Term.absfree idx' least_conjunction);
-
-        val least = singleton (Proof_Context.export names_lthy lthy)
-          (Goal.prove_sorry lthy [] []
-            (Logic.mk_implies (least_prem,
-              HOLogic.mk_Trueprop (HOLogic.mk_imp (i_field, least_conjunction))))
-            (K (mk_min_algs_least_tac least_cT least_ct
-              suc_bd_worel min_algs_thms alg_set_thms)))
-          |> Thm.close_derivation;
-      in
-        (min_algs_thms, monos, card_of, least)
-      end;
-
-    val timer = time (timer "min_algs definition & thms");
-
-    val min_alg_binds = mk_internal_bs min_algN;
-    fun min_alg_bind i = nth min_alg_binds (i - 1);
-    fun min_alg_name i = Binding.name_of (min_alg_bind i);
-    val min_alg_def_bind = rpair [] o Thm.def_binding o min_alg_bind;
-
-    fun min_alg_spec i =
-      let
-        val min_algT =
-          Library.foldr (op -->) (ATs @ sTs, HOLogic.mk_setT (nth activeAs (i - 1)));
-
-        val lhs = Term.list_comb (Free (min_alg_name i, min_algT), As @ ss);
-        val rhs = mk_UNION (field_suc_bd)
-          (Term.absfree idx' (mk_nthN n (mk_min_algs As ss $ idx) i));
-      in
-        mk_Trueprop_eq (lhs, rhs)
-      end;
-
-    val ((min_alg_frees, (_, min_alg_def_frees)), (lthy, lthy_old)) =
-        lthy
-        |> fold_map (fn i => Specification.definition
-          (SOME (min_alg_bind i, NONE, NoSyn), (min_alg_def_bind i, min_alg_spec i))) ks
-        |>> apsnd split_list o split_list
-        ||> `Local_Theory.restore;
-
-    val phi = Proof_Context.export_morphism lthy_old lthy;
-    val min_algs = map (fst o Term.dest_Const o Morphism.term phi) min_alg_frees;
-    val min_alg_defs = map (Morphism.thm phi) min_alg_def_frees;
-
-    fun mk_min_alg As ss i =
-      let
-        val T = HOLogic.mk_setT (range_type (fastype_of (nth ss (i - 1))))
-        val args = As @ ss;
-        val Ts = map fastype_of args;
-        val min_algT = Library.foldr (op -->) (Ts, T);
-      in
-        Term.list_comb (Const (nth min_algs (i - 1), min_algT), args)
-      end;
-
-    val (alg_min_alg_thm, card_of_min_alg_thms, least_min_alg_thms, mor_incl_min_alg_thm) =
-      let
-        val min_algs = map (mk_min_alg As ss) ks;
-
-        val goal = fold_rev Logic.all (As @ ss) (HOLogic.mk_Trueprop (mk_alg As min_algs ss));
-        val alg_min_alg = Goal.prove_sorry lthy [] [] goal
-          (K (mk_alg_min_alg_tac m alg_def min_alg_defs suc_bd_limit_thm sum_Cinfinite
-            set_bd_sumss min_algs_thms min_algs_mono_thms))
-          |> Thm.close_derivation;
-
-        val Asuc_bd = mk_Asuc_bd As;
-        fun mk_card_of_thm min_alg def = Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (As @ ss)
-            (HOLogic.mk_Trueprop (mk_ordLeq (mk_card_of min_alg) Asuc_bd)))
-          (K (mk_card_of_min_alg_tac def card_of_min_algs_thm
-            suc_bd_Card_order suc_bd_Asuc_bd Asuc_bd_Cinfinite))
-          |> Thm.close_derivation;
-
-        val least_prem = HOLogic.mk_Trueprop (mk_alg As Bs ss);
-        fun mk_least_thm min_alg B def = Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (As @ Bs @ ss)
-            (Logic.mk_implies (least_prem, HOLogic.mk_Trueprop (mk_leq min_alg B))))
-          (K (mk_least_min_alg_tac def least_min_algs_thm))
-          |> Thm.close_derivation;
-
-        val leasts = map3 mk_least_thm min_algs Bs min_alg_defs;
-
-        val incl_prem = HOLogic.mk_Trueprop (mk_alg passive_UNIVs Bs ss);
-        val incl_min_algs = map (mk_min_alg passive_UNIVs ss) ks;
-        val incl = Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (Bs @ ss)
-            (Logic.mk_implies (incl_prem,
-              HOLogic.mk_Trueprop (mk_mor incl_min_algs ss Bs ss active_ids))))
-          (K (EVERY' (rtac mor_incl_thm :: map etac leasts) 1))
-          |> Thm.close_derivation;
-      in
-        (alg_min_alg, map2 mk_card_of_thm min_algs min_alg_defs, leasts, incl)
-      end;
-
-    val timer = time (timer "Minimal algebra definition & thms");
-
-    val II_repT = HOLogic.mk_prodT (HOLogic.mk_tupleT II_BTs, HOLogic.mk_tupleT II_sTs);
-    val IIT_bind = mk_internal_b IITN;
-
-    val ((IIT_name, (IIT_glob_info, IIT_loc_info)), lthy) =
-      typedef (IIT_bind, params, NoSyn)
-        (HOLogic.mk_UNIV II_repT) NONE (EVERY' [rtac exI, rtac UNIV_I] 1) lthy;
-
-    val IIT = Type (IIT_name, params');
-    val Abs_IIT = Const (#Abs_name IIT_glob_info, II_repT --> IIT);
-    val Rep_IIT = Const (#Rep_name IIT_glob_info, IIT --> II_repT);
-    val Abs_IIT_inverse_thm = UNIV_I RS #Abs_inverse IIT_loc_info;
-
-    val initT = IIT --> Asuc_bdT;
-    val active_initTs = replicate n initT;
-    val init_FTs = map2 (fn Ds => mk_T_of_bnf Ds (passiveAs @ active_initTs)) Dss bnfs;
-    val init_fTs = map (fn T => initT --> T) activeAs;
-
-    val (((((((iidx, iidx'), init_xs), (init_xFs, init_xFs')),
-      init_fs), init_fs_copy), init_phis), names_lthy) = names_lthy
-      |> yield_singleton (apfst (op ~~) oo mk_Frees' "i") IIT
-      ||>> mk_Frees "ix" active_initTs
-      ||>> mk_Frees' "x" init_FTs
-      ||>> mk_Frees "f" init_fTs
-      ||>> mk_Frees "f" init_fTs
-      ||>> mk_Frees "P" (replicate n (mk_pred1T initT));
-
-    val II = HOLogic.mk_Collect (fst iidx', IIT, list_exists_free (II_Bs @ II_ss)
-      (HOLogic.mk_conj (HOLogic.mk_eq (iidx,
-        Abs_IIT $ (HOLogic.mk_prod (HOLogic.mk_tuple II_Bs, HOLogic.mk_tuple II_ss))),
-        mk_alg passive_UNIVs II_Bs II_ss)));
-
-    val select_Bs = map (mk_nthN n (HOLogic.mk_fst (Rep_IIT $ iidx))) ks;
-    val select_ss = map (mk_nthN n (HOLogic.mk_snd (Rep_IIT $ iidx))) ks;
-
-    val str_init_binds = mk_internal_bs str_initN;
-    fun str_init_bind i = nth str_init_binds (i - 1);
-    val str_init_name = Binding.name_of o str_init_bind;
-    val str_init_def_bind = rpair [] o Thm.def_binding o str_init_bind;
-
-    fun str_init_spec i =
-      let
-        val T = nth init_FTs (i - 1);
-        val init_xF = nth init_xFs (i - 1)
-        val select_s = nth select_ss (i - 1);
-        val map = mk_map_of_bnf (nth Dss (i - 1))
-          (passiveAs @ active_initTs) (passiveAs @ replicate n Asuc_bdT)
-          (nth bnfs (i - 1));
-        val map_args = passive_ids @ replicate n (mk_rapp iidx Asuc_bdT);
-        val str_initT = T --> IIT --> Asuc_bdT;
-
-        val lhs = Term.list_comb (Free (str_init_name i, str_initT), [init_xF, iidx]);
-        val rhs = select_s $ (Term.list_comb (map, map_args) $ init_xF);
-      in
-        mk_Trueprop_eq (lhs, rhs)
-      end;
-
-    val ((str_init_frees, (_, str_init_def_frees)), (lthy, lthy_old)) =
-      lthy
-      |> fold_map (fn i => Specification.definition
-        (SOME (str_init_bind i, NONE, NoSyn), (str_init_def_bind i, str_init_spec i))) ks
-      |>> apsnd split_list o split_list
-      ||> `Local_Theory.restore;
-
-    val phi = Proof_Context.export_morphism lthy_old lthy;
-    val str_inits =
-      map (Term.subst_atomic_types (map (`(Morphism.typ phi)) params') o Morphism.term phi)
-        str_init_frees;
-
-    val str_init_defs = map (Morphism.thm phi) str_init_def_frees;
-
-    val car_inits = map (mk_min_alg passive_UNIVs str_inits) ks;
-
-    (*TODO: replace with instantiate? (problem: figure out right type instantiation)*)
-    val alg_init_thm = Goal.prove_sorry lthy [] []
-      (HOLogic.mk_Trueprop (mk_alg passive_UNIVs car_inits str_inits))
-      (K (rtac alg_min_alg_thm 1))
-      |> Thm.close_derivation;
-
-    val alg_select_thm = Goal.prove_sorry lthy [] []
-      (HOLogic.mk_Trueprop (mk_Ball II
-        (Term.absfree iidx' (mk_alg passive_UNIVs select_Bs select_ss))))
-      (mk_alg_select_tac Abs_IIT_inverse_thm)
-      |> Thm.close_derivation;
-
-    val mor_select_thm =
-      let
-        val alg_prem = HOLogic.mk_Trueprop (mk_alg passive_UNIVs Bs ss);
-        val i_prem = HOLogic.mk_Trueprop (HOLogic.mk_mem (iidx, II));
-        val mor_prem = HOLogic.mk_Trueprop (mk_mor select_Bs select_ss Bs ss Asuc_fs);
-        val prems = [alg_prem, i_prem, mor_prem];
-        val concl = HOLogic.mk_Trueprop
-          (mk_mor car_inits str_inits Bs ss
-            (map (fn f => HOLogic.mk_comp (f, mk_rapp iidx Asuc_bdT)) Asuc_fs));
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (iidx :: Bs @ ss @ Asuc_fs) (Logic.list_implies (prems, concl)))
-          (K (mk_mor_select_tac mor_def mor_cong_thm mor_comp_thm mor_incl_min_alg_thm alg_def
-            alg_select_thm alg_set_thms set_mapss str_init_defs))
-        |> Thm.close_derivation
-      end;
-
-    val (init_ex_mor_thm, init_unique_mor_thms) =
-      let
-        val prem = HOLogic.mk_Trueprop (mk_alg passive_UNIVs Bs ss);
-        val concl = HOLogic.mk_Trueprop
-          (list_exists_free init_fs (mk_mor car_inits str_inits Bs ss init_fs));
-        val ex_mor = Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (Bs @ ss) (Logic.mk_implies (prem, concl)))
-          (mk_init_ex_mor_tac Abs_IIT_inverse_thm ex_copy_alg_thm alg_min_alg_thm
-            card_of_min_alg_thms mor_comp_thm mor_select_thm mor_incl_min_alg_thm)
-          |> Thm.close_derivation;
-
-        val prems = map2 (HOLogic.mk_Trueprop oo curry HOLogic.mk_mem) init_xs car_inits
-        val mor_prems = map HOLogic.mk_Trueprop
-          [mk_mor car_inits str_inits Bs ss init_fs,
-          mk_mor car_inits str_inits Bs ss init_fs_copy];
-        fun mk_fun_eq f g x = HOLogic.mk_eq (f $ x, g $ x);
-        val unique = HOLogic.mk_Trueprop
-          (Library.foldr1 HOLogic.mk_conj (map3 mk_fun_eq init_fs init_fs_copy init_xs));
-        val unique_mor = Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (init_xs @ Bs @ ss @ init_fs @ init_fs_copy)
-            (Logic.list_implies (prems @ mor_prems, unique)))
-          (K (mk_init_unique_mor_tac m alg_def alg_init_thm least_min_alg_thms
-            in_mono'_thms alg_set_thms morE_thms map_cong0s))
-          |> Thm.close_derivation;
-      in
-        (ex_mor, split_conj_thm unique_mor)
-      end;
-
-    val init_setss = mk_setss (passiveAs @ active_initTs);
-    val active_init_setss = map (drop m) init_setss;
-    val init_ins = map2 (fn sets => mk_in (passive_UNIVs @ car_inits) sets) init_setss init_FTs;
-
-    fun mk_closed phis =
-      let
-        fun mk_conjunct phi str_init init_sets init_in x x' =
-          let
-            val prem = Library.foldr1 HOLogic.mk_conj
-              (map2 (fn set => mk_Ball (set $ x)) init_sets phis);
-            val concl = phi $ (str_init $ x);
-          in
-            mk_Ball init_in (Term.absfree x' (HOLogic.mk_imp (prem, concl)))
-          end;
-      in
-        Library.foldr1 HOLogic.mk_conj
-          (map6 mk_conjunct phis str_inits active_init_setss init_ins init_xFs init_xFs')
-      end;
-
-    val init_induct_thm =
-      let
-        val prem = HOLogic.mk_Trueprop (mk_closed init_phis);
-        val concl = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
-          (map2 mk_Ball car_inits init_phis));
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all init_phis (Logic.mk_implies (prem, concl)))
-          (K (mk_init_induct_tac m alg_def alg_init_thm least_min_alg_thms alg_set_thms))
-        |> Thm.close_derivation
-      end;
-
-    val timer = time (timer "Initiality definition & thms");
-
-    val ((T_names, (T_glob_infos, T_loc_infos)), lthy) =
-      lthy
-      |> fold_map3 (fn b => fn mx => fn car_init =>
-        typedef (Binding.conceal b, params, mx) car_init NONE
-          (EVERY' [rtac ssubst, rtac @{thm ex_in_conv}, resolve_tac alg_not_empty_thms,
-            rtac alg_init_thm] 1)) bs mixfixes car_inits
-      |>> apsnd split_list o split_list;
-
-    val Ts = map (fn name => Type (name, params')) T_names;
-    fun mk_Ts passive = map (Term.typ_subst_atomic (passiveAs ~~ passive)) Ts;
-    val Ts' = mk_Ts passiveBs;
-    val Rep_Ts = map2 (fn info => fn T => Const (#Rep_name info, T --> initT)) T_glob_infos Ts;
-    val Abs_Ts = map2 (fn info => fn T => Const (#Abs_name info, initT --> T)) T_glob_infos Ts;
-
-    val type_defs = map #type_definition T_loc_infos;
-    val Reps = map #Rep T_loc_infos;
-    val Rep_casess = map #Rep_cases T_loc_infos;
-    val Rep_injects = map #Rep_inject T_loc_infos;
-    val Rep_inverses = map #Rep_inverse T_loc_infos;
-    val Abs_inverses = map #Abs_inverse T_loc_infos;
-
-    fun mk_inver_thm mk_tac rep abs X thm =
-      Goal.prove_sorry lthy [] []
-        (HOLogic.mk_Trueprop (mk_inver rep abs X))
-        (K (EVERY' [rtac ssubst, rtac @{thm inver_def}, rtac ballI, mk_tac thm] 1))
-      |> Thm.close_derivation;
-
-    val inver_Reps = map4 (mk_inver_thm rtac) Abs_Ts Rep_Ts (map HOLogic.mk_UNIV Ts) Rep_inverses;
-    val inver_Abss = map4 (mk_inver_thm etac) Rep_Ts Abs_Ts car_inits Abs_inverses;
-
-    val timer = time (timer "THE TYPEDEFs & Rep/Abs thms");
-
-    val UNIVs = map HOLogic.mk_UNIV Ts;
-    val FTs = mk_FTs (passiveAs @ Ts);
-    val FTs' = mk_FTs (passiveBs @ Ts');
-    fun mk_set_Ts T = passiveAs @ replicate n (HOLogic.mk_setT T);
-    val setFTss = map (mk_FTs o mk_set_Ts) passiveAs;
-    val FTs_setss = mk_setss (passiveAs @ Ts);
-    val FTs'_setss = mk_setss (passiveBs @ Ts');
-    val map_FT_inits = map2 (fn Ds =>
-      mk_map_of_bnf Ds (passiveAs @ Ts) (passiveAs @ active_initTs)) Dss bnfs;
-    val fTs = map2 (curry op -->) Ts activeAs;
-    val foldT = Library.foldr1 HOLogic.mk_prodT (map2 (curry op -->) Ts activeAs);
-    val rec_sTs = map (Term.typ_subst_atomic (activeBs ~~ Ts)) prod_sTs;
-    val rec_maps = map (Term.subst_atomic_types (activeBs ~~ Ts)) map_fsts;
-    val rec_maps_rev = map (Term.subst_atomic_types (activeBs ~~ Ts)) map_fsts_rev;
-    val rec_fsts = map (Term.subst_atomic_types (activeBs ~~ Ts)) fsts;
-    val rec_UNIVs = map2 (HOLogic.mk_UNIV oo curry HOLogic.mk_prodT) Ts activeAs;
-
-    val (((((((((Izs1, Izs1'), (Izs2, Izs2')), (xFs, xFs')), yFs), (AFss, AFss')),
-      (fold_f, fold_f')), fs), rec_ss), names_lthy) = names_lthy
-      |> mk_Frees' "z1" Ts
-      ||>> mk_Frees' "z2" Ts'
-      ||>> mk_Frees' "x" FTs
-      ||>> mk_Frees "y" FTs'
-      ||>> mk_Freess' "z" setFTss
-      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "f") foldT
-      ||>> mk_Frees "f" fTs
-      ||>> mk_Frees "s" rec_sTs;
-
-    val Izs = map2 retype_free Ts zs;
-    val phis = map2 retype_free (map mk_pred1T Ts) init_phis;
-    val phi2s = map2 retype_free (map2 mk_pred2T Ts Ts') init_phis;
-
-    fun ctor_bind i = nth external_bs (i - 1) |> Binding.prefix_name (ctorN ^ "_");
-    val ctor_name = Binding.name_of o ctor_bind;
-    val ctor_def_bind = rpair [] o Binding.conceal o Thm.def_binding o ctor_bind;
-
-    fun ctor_spec i abs str map_FT_init x x' =
-      let
-        val ctorT = nth FTs (i - 1) --> nth Ts (i - 1);
-
-        val lhs = Free (ctor_name i, ctorT);
-        val rhs = Term.absfree x' (abs $ (str $
-          (Term.list_comb (map_FT_init, map HOLogic.id_const passiveAs @ Rep_Ts) $ x)));
-      in
-        mk_Trueprop_eq (lhs, rhs)
-      end;
-
-    val ((ctor_frees, (_, ctor_def_frees)), (lthy, lthy_old)) =
-      lthy
-      |> fold_map6 (fn i => fn abs => fn str => fn mapx => fn x => fn x' =>
-        Specification.definition
-          (SOME (ctor_bind i, NONE, NoSyn), (ctor_def_bind i, ctor_spec i abs str mapx x x')))
-          ks Abs_Ts str_inits map_FT_inits xFs xFs'
-      |>> apsnd split_list o split_list
-      ||> `Local_Theory.restore;
-
-    val phi = Proof_Context.export_morphism lthy_old lthy;
-    fun mk_ctors passive =
-      map (Term.subst_atomic_types (map (Morphism.typ phi) params' ~~ (mk_params passive)) o
-        Morphism.term phi) ctor_frees;
-    val ctors = mk_ctors passiveAs;
-    val ctor's = mk_ctors passiveBs;
-    val ctor_defs = map (Morphism.thm phi) ctor_def_frees;
-
-    val (mor_Rep_thm, mor_Abs_thm) =
-      let
-        val copy = alg_init_thm RS copy_alg_thm;
-        fun mk_bij inj Rep cases = @{thm bij_betwI'} OF [inj, Rep, cases];
-        val bijs = map3 mk_bij Rep_injects Reps Rep_casess;
-        val mor_Rep =
-          Goal.prove_sorry lthy [] []
-            (HOLogic.mk_Trueprop (mk_mor UNIVs ctors car_inits str_inits Rep_Ts))
-            (mk_mor_Rep_tac ctor_defs copy bijs inver_Abss inver_Reps)
-          |> Thm.close_derivation;
-
-        val inv = mor_inv_thm OF [mor_Rep, talg_thm, alg_init_thm];
-        val mor_Abs =
-          Goal.prove_sorry lthy [] []
-            (HOLogic.mk_Trueprop (mk_mor car_inits str_inits UNIVs ctors Abs_Ts))
-            (K (mk_mor_Abs_tac inv inver_Abss inver_Reps))
-          |> Thm.close_derivation;
-      in
-        (mor_Rep, mor_Abs)
-      end;
-
-    val timer = time (timer "ctor definitions & thms");
-
-    val fold_fun = Term.absfree fold_f'
-      (mk_mor UNIVs ctors active_UNIVs ss (map (mk_nthN n fold_f) ks));
-    val foldx = HOLogic.choice_const foldT $ fold_fun;
-
-    fun fold_bind i = nth external_bs (i - 1) |> Binding.prefix_name (ctor_foldN ^ "_");
-    val fold_name = Binding.name_of o fold_bind;
-    val fold_def_bind = rpair [] o Binding.conceal o Thm.def_binding o fold_bind;
-
-    fun fold_spec i T AT =
-      let
-        val foldT = Library.foldr (op -->) (sTs, T --> AT);
-
-        val lhs = Term.list_comb (Free (fold_name i, foldT), ss);
-        val rhs = mk_nthN n foldx i;
-      in
-        mk_Trueprop_eq (lhs, rhs)
-      end;
-
-    val ((fold_frees, (_, fold_def_frees)), (lthy, lthy_old)) =
-      lthy
-      |> fold_map3 (fn i => fn T => fn AT =>
-        Specification.definition
-          (SOME (fold_bind i, NONE, NoSyn), (fold_def_bind i, fold_spec i T AT)))
-          ks Ts activeAs
-      |>> apsnd split_list o split_list
-      ||> `Local_Theory.restore;
-
-    val phi = Proof_Context.export_morphism lthy_old lthy;
-    val folds = map (Morphism.term phi) fold_frees;
-    val fold_names = map (fst o dest_Const) folds;
-    fun mk_folds passives actives =
-      map3 (fn name => fn T => fn active =>
-        Const (name, Library.foldr (op -->)
-          (map2 (curry op -->) (mk_FTs (passives @ actives)) actives, T --> active)))
-      fold_names (mk_Ts passives) actives;
-    fun mk_fold Ts ss i = Term.list_comb (Const (nth fold_names (i - 1), Library.foldr (op -->)
-      (map fastype_of ss, nth Ts (i - 1) --> range_type (fastype_of (nth ss (i - 1))))), ss);
-    val fold_defs = map (Morphism.thm phi) fold_def_frees;
-
-    val mor_fold_thm =
-      let
-        val ex_mor = talg_thm RS init_ex_mor_thm;
-        val mor_cong = mor_cong_thm OF (map (mk_nth_conv n) ks);
-        val mor_comp = mor_Rep_thm RS mor_comp_thm;
-        val cT = certifyT lthy foldT;
-        val ct = certify lthy fold_fun
-      in
-        singleton (Proof_Context.export names_lthy lthy)
-          (Goal.prove_sorry lthy [] []
-            (HOLogic.mk_Trueprop (mk_mor UNIVs ctors active_UNIVs ss (map (mk_fold Ts ss) ks)))
-            (K (mk_mor_fold_tac cT ct fold_defs ex_mor (mor_comp RS mor_cong))))
-        |> Thm.close_derivation
-      end;
-
-    val ctor_fold_thms = map (fn morE => rule_by_tactic lthy
-      ((rtac CollectI THEN' CONJ_WRAP' (K (rtac @{thm subset_UNIV})) (1 upto m + n)) 1)
-      (mor_fold_thm RS morE)) morE_thms;
-
-    val (fold_unique_mor_thms, fold_unique_mor_thm) =
-      let
-        val prem = HOLogic.mk_Trueprop (mk_mor UNIVs ctors active_UNIVs ss fs);
-        fun mk_fun_eq f i = HOLogic.mk_eq (f, mk_fold Ts ss i);
-        val unique = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj (map2 mk_fun_eq fs ks));
-        val unique_mor = Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (ss @ fs) (Logic.mk_implies (prem, unique)))
-          (K (mk_fold_unique_mor_tac type_defs init_unique_mor_thms Reps
-            mor_comp_thm mor_Abs_thm mor_fold_thm))
-          |> Thm.close_derivation;
-      in
-        `split_conj_thm unique_mor
-      end;
-
-    val (ctor_fold_unique_thms, ctor_fold_unique_thm) =
-      `split_conj_thm (mk_conjIN n RS
-        (mor_UNIV_thm RS iffD2 RS fold_unique_mor_thm))
-
-    val fold_ctor_thms =
-      map (fn thm => (mor_incl_thm OF replicate n @{thm subset_UNIV}) RS thm RS sym)
-        fold_unique_mor_thms;
-
-    val ctor_o_fold_thms =
-      let
-        val mor = mor_comp_thm OF [mor_fold_thm, mor_str_thm];
-      in
-        map2 (fn unique => fn fold_ctor =>
-          trans OF [mor RS unique, fold_ctor]) fold_unique_mor_thms fold_ctor_thms
-      end;
-
-    val timer = time (timer "fold definitions & thms");
-
-    val map_ctors = map2 (fn Ds => fn bnf =>
-      Term.list_comb (mk_map_of_bnf Ds (passiveAs @ FTs) (passiveAs @ Ts) bnf,
-        map HOLogic.id_const passiveAs @ ctors)) Dss bnfs;
-
-    fun dtor_bind i = nth external_bs (i - 1) |> Binding.prefix_name (dtorN ^ "_");
-    val dtor_name = Binding.name_of o dtor_bind;
-    val dtor_def_bind = rpair [] o Binding.conceal o Thm.def_binding o dtor_bind;
-
-    fun dtor_spec i FT T =
-      let
-        val dtorT = T --> FT;
-
-        val lhs = Free (dtor_name i, dtorT);
-        val rhs = mk_fold Ts map_ctors i;
-      in
-        mk_Trueprop_eq (lhs, rhs)
-      end;
-
-    val ((dtor_frees, (_, dtor_def_frees)), (lthy, lthy_old)) =
-      lthy
-      |> fold_map3 (fn i => fn FT => fn T =>
-        Specification.definition
-          (SOME (dtor_bind i, NONE, NoSyn), (dtor_def_bind i, dtor_spec i FT T))) ks FTs Ts
-      |>> apsnd split_list o split_list
-      ||> `Local_Theory.restore;
-
-    val phi = Proof_Context.export_morphism lthy_old lthy;
-    fun mk_dtors params =
-      map (Term.subst_atomic_types (map (Morphism.typ phi) params' ~~ params) o Morphism.term phi)
-        dtor_frees;
-    val dtors = mk_dtors params';
-    val dtor_defs = map (Morphism.thm phi) dtor_def_frees;
-
-    val ctor_o_dtor_thms = map2 (fold_thms lthy o single) dtor_defs ctor_o_fold_thms;
-
-    val dtor_o_ctor_thms =
-      let
-        fun mk_goal dtor ctor FT =
-          mk_Trueprop_eq (HOLogic.mk_comp (dtor, ctor), HOLogic.id_const FT);
-        val goals = map3 mk_goal dtors ctors FTs;
-      in
-        map5 (fn goal => fn dtor_def => fn foldx => fn map_comp_id => fn map_cong0L =>
-          Goal.prove_sorry lthy [] [] goal
-            (K (mk_dtor_o_ctor_tac dtor_def foldx map_comp_id map_cong0L ctor_o_fold_thms))
-          |> Thm.close_derivation)
-        goals dtor_defs ctor_fold_thms map_comp_id_thms map_cong0L_thms
-      end;
-
-    val dtor_ctor_thms = map (fn thm => thm RS @{thm pointfree_idE}) dtor_o_ctor_thms;
-    val ctor_dtor_thms = map (fn thm => thm RS @{thm pointfree_idE}) ctor_o_dtor_thms;
-
-    val bij_dtor_thms =
-      map2 (fn thm1 => fn thm2 => @{thm o_bij} OF [thm1, thm2]) ctor_o_dtor_thms dtor_o_ctor_thms;
-    val inj_dtor_thms = map (fn thm => thm RS @{thm bij_is_inj}) bij_dtor_thms;
-    val surj_dtor_thms = map (fn thm => thm RS @{thm bij_is_surj}) bij_dtor_thms;
-    val dtor_nchotomy_thms = map (fn thm => thm RS @{thm surjD}) surj_dtor_thms;
-    val dtor_inject_thms = map (fn thm => thm RS @{thm inj_eq}) inj_dtor_thms;
-    val dtor_exhaust_thms = map (fn thm => thm RS exE) dtor_nchotomy_thms;
-
-    val bij_ctor_thms =
-      map2 (fn thm1 => fn thm2 => @{thm o_bij} OF [thm1, thm2]) dtor_o_ctor_thms ctor_o_dtor_thms;
-    val inj_ctor_thms = map (fn thm => thm RS @{thm bij_is_inj}) bij_ctor_thms;
-    val surj_ctor_thms = map (fn thm => thm RS @{thm bij_is_surj}) bij_ctor_thms;
-    val ctor_nchotomy_thms = map (fn thm => thm RS @{thm surjD}) surj_ctor_thms;
-    val ctor_inject_thms = map (fn thm => thm RS @{thm inj_eq}) inj_ctor_thms;
-    val ctor_exhaust_thms = map (fn thm => thm RS exE) ctor_nchotomy_thms;
-
-    val timer = time (timer "dtor definitions & thms");
-
-    val fst_rec_pair_thms =
-      let
-        val mor = mor_comp_thm OF [mor_fold_thm, mor_convol_thm];
-      in
-        map2 (fn unique => fn fold_ctor =>
-          trans OF [mor RS unique, fold_ctor]) fold_unique_mor_thms fold_ctor_thms
-      end;
-
-    fun rec_bind i = nth external_bs (i - 1) |> Binding.prefix_name (ctor_recN ^ "_");
-    val rec_name = Binding.name_of o rec_bind;
-    val rec_def_bind = rpair [] o Binding.conceal o Thm.def_binding o rec_bind;
-
-    val rec_strs =
-      map3 (fn ctor => fn prod_s => fn mapx =>
-        mk_convol (HOLogic.mk_comp (ctor, Term.list_comb (mapx, passive_ids @ rec_fsts)), prod_s))
-      ctors rec_ss rec_maps;
-
-    fun rec_spec i T AT =
-      let
-        val recT = Library.foldr (op -->) (rec_sTs, T --> AT);
-
-        val lhs = Term.list_comb (Free (rec_name i, recT), rec_ss);
-        val rhs = HOLogic.mk_comp (snd_const (HOLogic.mk_prodT (T, AT)), mk_fold Ts rec_strs i);
-      in
-        mk_Trueprop_eq (lhs, rhs)
-      end;
-
-    val ((rec_frees, (_, rec_def_frees)), (lthy, lthy_old)) =
-      lthy
-      |> fold_map3 (fn i => fn T => fn AT =>
-        Specification.definition
-          (SOME (rec_bind i, NONE, NoSyn), (rec_def_bind i, rec_spec i T AT)))
-          ks Ts activeAs
-      |>> apsnd split_list o split_list
-      ||> `Local_Theory.restore;
-
-    val phi = Proof_Context.export_morphism lthy_old lthy;
-    val recs = map (Morphism.term phi) rec_frees;
-    val rec_names = map (fst o dest_Const) recs;
-    fun mk_rec ss i = Term.list_comb (Const (nth rec_names (i - 1), Library.foldr (op -->)
-      (map fastype_of ss, nth Ts (i - 1) --> range_type (fastype_of (nth ss (i - 1))))), ss);
-    val rec_defs = map (Morphism.thm phi) rec_def_frees;
-
-    val convols = map2 (fn T => fn i => mk_convol (HOLogic.id_const T, mk_rec rec_ss i)) Ts ks;
-    val ctor_rec_thms =
-      let
-        fun mk_goal i rec_s rec_map ctor x =
-          let
-            val lhs = mk_rec rec_ss i $ (ctor $ x);
-            val rhs = rec_s $ (Term.list_comb (rec_map, passive_ids @ convols) $ x);
-          in
-            fold_rev Logic.all (x :: rec_ss) (mk_Trueprop_eq (lhs, rhs))
-          end;
-        val goals = map5 mk_goal ks rec_ss rec_maps_rev ctors xFs;
-      in
-        map2 (fn goal => fn foldx =>
-          Goal.prove_sorry lthy [] [] goal (mk_rec_tac rec_defs foldx fst_rec_pair_thms)
-          |> Thm.close_derivation)
-        goals ctor_fold_thms
-      end;
-
-    val rec_unique_mor_thm =
-      let
-        val id_fs = map2 (fn T => fn f => mk_convol (HOLogic.id_const T, f)) Ts fs;
-        val prem = HOLogic.mk_Trueprop (mk_mor UNIVs ctors rec_UNIVs rec_strs id_fs);
-        fun mk_fun_eq f i = HOLogic.mk_eq (f, mk_rec rec_ss i);
-        val unique = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj (map2 mk_fun_eq fs ks));
-      in
-        Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (rec_ss @ fs) (Logic.mk_implies (prem, unique)))
-          (mk_rec_unique_mor_tac rec_defs fst_rec_pair_thms fold_unique_mor_thm)
-          |> Thm.close_derivation
-      end;
-
-    val (ctor_rec_unique_thms, ctor_rec_unique_thm) =
-      `split_conj_thm (split_conj_prems n
-        (mor_UNIV_thm RS iffD2 RS rec_unique_mor_thm)
-        |> Local_Defs.unfold lthy (@{thms convol_o o_id id_o o_assoc[symmetric] fst_convol} @
-           map_id0s @ sym_map_comps) OF replicate n @{thm arg_cong2[of _ _ _ _ convol, OF refl]});
-
-    val timer = time (timer "rec definitions & thms");
-
-    val (ctor_induct_thm, induct_params) =
-      let
-        fun mk_prem phi ctor sets x =
-          let
-            fun mk_IH phi set z =
-              let
-                val prem = HOLogic.mk_Trueprop (HOLogic.mk_mem (z, set $ x));
-                val concl = HOLogic.mk_Trueprop (phi $ z);
-              in
-                Logic.all z (Logic.mk_implies (prem, concl))
-              end;
-
-            val IHs = map3 mk_IH phis (drop m sets) Izs;
-            val concl = HOLogic.mk_Trueprop (phi $ (ctor $ x));
-          in
-            Logic.all x (Logic.list_implies (IHs, concl))
-          end;
-
-        val prems = map4 mk_prem phis ctors FTs_setss xFs;
-
-        fun mk_concl phi z = phi $ z;
-        val concl =
-          HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj (map2 mk_concl phis Izs));
-
-        val goal = Logic.list_implies (prems, concl);
-      in
-        (Goal.prove_sorry lthy [] []
-          (fold_rev Logic.all (phis @ Izs) goal)
-          (K (mk_ctor_induct_tac lthy m set_mapss init_induct_thm morE_thms mor_Abs_thm
-            Rep_inverses Abs_inverses Reps))
-        |> Thm.close_derivation,
-        rev (Term.add_tfrees goal []))
-      end;
-
-    val cTs = map (SOME o certifyT lthy o TFree) induct_params;
-
-    val weak_ctor_induct_thms =
-      let fun insts i = (replicate (i - 1) TrueI) @ (asm_rl :: replicate (n - i) TrueI);
-      in map (fn i => (ctor_induct_thm OF insts i) RS mk_conjunctN n i) ks end;
-
-    val (ctor_induct2_thm, induct2_params) =
-      let
-        fun mk_prem phi ctor ctor' sets sets' x y =
-          let
-            fun mk_IH phi set set' z1 z2 =
-              let
-                val prem1 = HOLogic.mk_Trueprop (HOLogic.mk_mem (z1, (set $ x)));
-                val prem2 = HOLogic.mk_Trueprop (HOLogic.mk_mem (z2, (set' $ y)));
-                val concl = HOLogic.mk_Trueprop (phi $ z1 $ z2);
-              in
-                fold_rev Logic.all [z1, z2] (Logic.list_implies ([prem1, prem2], concl))
-              end;
-
-            val IHs = map5 mk_IH phi2s (drop m sets) (drop m sets') Izs1 Izs2;
-            val concl = HOLogic.mk_Trueprop (phi $ (ctor $ x) $ (ctor' $ y));
-          in
-            fold_rev Logic.all [x, y] (Logic.list_implies (IHs, concl))
-          end;
-
-        val prems = map7 mk_prem phi2s ctors ctor's FTs_setss FTs'_setss xFs yFs;
-
-        fun mk_concl phi z1 z2 = phi $ z1 $ z2;
-        val concl = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
-          (map3 mk_concl phi2s Izs1 Izs2));
-        fun mk_t phi (z1, z1') (z2, z2') =
-          Term.absfree z1' (HOLogic.mk_all (fst z2', snd z2', phi $ z1 $ z2));
-        val cts = map3 (SOME o certify lthy ooo mk_t) phi2s (Izs1 ~~ Izs1') (Izs2 ~~ Izs2');
-        val goal = Logic.list_implies (prems, concl);
-      in
-        (singleton (Proof_Context.export names_lthy lthy)
-          (Goal.prove_sorry lthy [] [] goal
-            (mk_ctor_induct2_tac cTs cts ctor_induct_thm weak_ctor_induct_thms))
-          |> Thm.close_derivation,
-        rev (Term.add_tfrees goal []))
-      end;
-
-    val timer = time (timer "induction");
-
-    fun mk_ctor_map_DEADID_thm ctor_inject map_id0 =
-      trans OF [id_apply, iffD2 OF [ctor_inject, map_id0 RS sym]];
-
-    fun mk_ctor_Irel_DEADID_thm ctor_inject bnf =
-      trans OF [ctor_inject, rel_eq_of_bnf bnf RS @{thm predicate2_eqD} RS sym];
-
-    val IphiTs = map2 mk_pred2T passiveAs passiveBs;
-    val Ipsi1Ts = map2 mk_pred2T passiveAs passiveCs;
-    val Ipsi2Ts = map2 mk_pred2T passiveCs passiveBs;
-    val activephiTs = map2 mk_pred2T activeAs activeBs;
-    val activeIphiTs = map2 mk_pred2T Ts Ts';
-    val (((((Iphis, Ipsi1s), Ipsi2s), activephis), activeIphis), names_lthy) = names_lthy
-      |> mk_Frees "R" IphiTs
-      ||>> mk_Frees "R" Ipsi1Ts
-      ||>> mk_Frees "Q" Ipsi2Ts
-      ||>> mk_Frees "S" activephiTs
-      ||>> mk_Frees "IR" activeIphiTs;
-    val rels = map2 (fn Ds => mk_rel_of_bnf Ds (passiveAs @ Ts) (passiveBs @ Ts')) Dss bnfs;
-
-    (*register new datatypes as BNFs*)
-    val (timer, Ibnfs, (ctor_Imap_o_thms, ctor_Imap_thms), ctor_Iset_thmss',
-        ctor_Irel_thms, Ibnf_notes, lthy) =
-      if m = 0 then
-        (timer, replicate n DEADID_bnf,
-        map_split (`(mk_pointfree lthy)) (map2 mk_ctor_map_DEADID_thm ctor_inject_thms map_ids),
-        replicate n [], map2 mk_ctor_Irel_DEADID_thm ctor_inject_thms bnfs, [], lthy)
-      else let
-        val fTs = map2 (curry op -->) passiveAs passiveBs;
-        val uTs = map2 (curry op -->) Ts Ts';
-
-        val (((((fs, fs'), fs_copy), us), (ys, ys')),
-          names_lthy) = names_lthy
-          |> mk_Frees' "f" fTs
-          ||>> mk_Frees "f" fTs
-          ||>> mk_Frees "u" uTs
-          ||>> mk_Frees' "y" passiveAs;
-
-        val map_FTFT's = map2 (fn Ds =>
-          mk_map_of_bnf Ds (passiveAs @ Ts) (passiveBs @ Ts')) Dss bnfs;
-        fun mk_passive_maps ATs BTs Ts =
-          map2 (fn Ds => mk_map_of_bnf Ds (ATs @ Ts) (BTs @ Ts)) Dss bnfs;
-        fun mk_map_fold_arg fs Ts ctor fmap =
-          HOLogic.mk_comp (ctor, Term.list_comb (fmap, fs @ map HOLogic.id_const Ts));
-        fun mk_map Ts fs Ts' ctors mk_maps =
-          mk_fold Ts (map2 (mk_map_fold_arg fs Ts') ctors (mk_maps Ts'));
-        val pmapsABT' = mk_passive_maps passiveAs passiveBs;
-        val fs_maps = map (mk_map Ts fs Ts' ctor's pmapsABT') ks;
-
-        val ls = 1 upto m;
-        val setsss = map (mk_setss o mk_set_Ts) passiveAs;
-
-        fun mk_col l T z z' sets =
-          let
-            fun mk_UN set = mk_Union T $ (set $ z);
-          in
-            Term.absfree z'
-              (mk_union (nth sets (l - 1) $ z,
-                Library.foldl1 mk_union (map mk_UN (drop m sets))))
-          end;
-
-        val colss = map5 (fn l => fn T => map3 (mk_col l T)) ls passiveAs AFss AFss' setsss;
-        val setss_by_range = map (fn cols => map (mk_fold Ts cols) ks) colss;
-        val setss_by_bnf = transpose setss_by_range;
-
-        val set_bss =
-          map (flat o map2 (fn B => fn b =>
-            if member (op =) resDs (TFree B) then [] else [b]) resBs) set_bss0;
-
-        val ctor_witss =
-          let
-            val witss = map2 (fn Ds => fn bnf => mk_wits_of_bnf
-              (replicate (nwits_of_bnf bnf) Ds)
-              (replicate (nwits_of_bnf bnf) (passiveAs @ Ts)) bnf) Dss bnfs;
-            fun close_wit (I, wit) = fold_rev Term.absfree (map (nth ys') I) wit;
-            fun wit_apply (arg_I, arg_wit) (fun_I, fun_wit) =
-              (union (op =) arg_I fun_I, fun_wit $ arg_wit);
-
-            fun gen_arg support i =
-              if i < m then [([i], nth ys i)]
-              else maps (mk_wit support (nth ctors (i - m)) (i - m)) (nth support (i - m))
-            and mk_wit support ctor i (I, wit) =
-              let val args = map (gen_arg (nth_map i (remove (op =) (I, wit)) support)) I;
-              in
-                (args, [([], wit)])
-                |-> fold (map_product wit_apply)
-                |> map (apsnd (fn t => ctor $ t))
-                |> minimize_wits
-              end;
-          in
-            map3 (fn ctor => fn i => map close_wit o minimize_wits o maps (mk_wit witss ctor i))
-              ctors (0 upto n - 1) witss
-          end;
-
-        val (Ibnf_consts, lthy) =
-          fold_map8 (fn b => fn map_b => fn rel_b => fn set_bs => fn mapx => fn sets => fn wits =>
-              fn T => fn lthy =>
-            define_bnf_consts Dont_Inline (user_policy Note_Some lthy) (SOME deads)
-              map_b rel_b set_bs
-              ((((((b, T), fold_rev Term.absfree fs' mapx), sets), sum_bd), wits), NONE) lthy)
-          bs map_bs rel_bs set_bss fs_maps setss_by_bnf ctor_witss Ts lthy;
-
-        val (_, Iconsts, Iconst_defs, mk_Iconsts) = split_list4 Ibnf_consts;
-        val (_, Isetss, Ibds_Ds, Iwitss_Ds, _) = split_list5 Iconsts;
-        val (Imap_defs, Iset_defss, Ibd_defs, Iwit_defss, Irel_defs) = split_list5 Iconst_defs;
-        val (mk_Imaps_Ds, mk_It_Ds, _, mk_Irels_Ds, _) = split_list5 mk_Iconsts;
-
-        val Irel_unabs_defs = map (fn def => mk_unabs_def m (def RS meta_eq_to_obj_eq)) Irel_defs;
-        val Iset_defs = flat Iset_defss;
-
-        fun mk_Imaps As Bs = map (fn mk => mk deads As Bs) mk_Imaps_Ds;
-        fun mk_Isetss As = map2 (fn mk => fn Isets => map (mk deads As) Isets) mk_It_Ds Isetss;
-        val Ibds = map2 (fn mk => mk deads passiveAs) mk_It_Ds Ibds_Ds;
-        val Iwitss =
-          map2 (fn mk => fn Iwits => map (mk deads passiveAs o snd) Iwits) mk_It_Ds Iwitss_Ds;
-        fun mk_Irels As Bs = map (fn mk => mk deads As Bs) mk_Irels_Ds;
-
-        val Imaps = mk_Imaps passiveAs passiveBs;
-        val fs_Imaps = map (fn m => Term.list_comb (m, fs)) Imaps;
-        val fs_copy_Imaps = map (fn m => Term.list_comb (m, fs_copy)) Imaps;
-        val (Isetss_by_range, Isetss_by_bnf) = `transpose (mk_Isetss passiveAs);
-
-        val map_setss = map (fn T => map2 (fn Ds =>
-          mk_map_of_bnf Ds (passiveAs @ Ts) (mk_set_Ts T)) Dss bnfs) passiveAs;
-
-        val timer = time (timer "bnf constants for the new datatypes");
-
-        val (ctor_Imap_thms, ctor_Imap_o_thms) =
-          let
-            fun mk_goal fs_map map ctor ctor' = fold_rev Logic.all fs
-              (mk_Trueprop_eq (HOLogic.mk_comp (fs_map, ctor),
-                HOLogic.mk_comp (ctor', Term.list_comb (map, fs @ fs_Imaps))));
-            val goals = map4 mk_goal fs_Imaps map_FTFT's ctors ctor's;
-            val maps =
-              map4 (fn goal => fn foldx => fn map_comp_id => fn map_cong0 =>
-                Goal.prove_sorry lthy [] [] goal
-                  (fn {context = ctxt, prems = _} => unfold_thms_tac ctxt Imap_defs THEN
-                    mk_map_tac m n foldx map_comp_id map_cong0)
-                |> Thm.close_derivation)
-              goals ctor_fold_thms map_comp_id_thms map_cong0s;
-          in
-            `(map (fn thm => thm RS @{thm comp_eq_dest})) maps
-          end;
-
-        val (ctor_Imap_unique_thms, ctor_Imap_unique_thm) =
-          let
-            fun mk_prem u map ctor ctor' =
-              mk_Trueprop_eq (HOLogic.mk_comp (u, ctor),
-                HOLogic.mk_comp (ctor', Term.list_comb (map, fs @ us)));
-            val prems = map4 mk_prem us map_FTFT's ctors ctor's;
-            val goal =
-              HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
-                (map2 (curry HOLogic.mk_eq) us fs_Imaps));
-            val unique = Goal.prove_sorry lthy [] []
-              (fold_rev Logic.all (us @ fs) (Logic.list_implies (prems, goal)))
-              (fn {context = ctxt, prems = _} => unfold_thms_tac ctxt Imap_defs THEN
-                mk_ctor_map_unique_tac ctor_fold_unique_thm sym_map_comps ctxt)
-              |> Thm.close_derivation;
-          in
-            `split_conj_thm unique
-          end;
-
-        val timer = time (timer "map functions for the new datatypes");
-
-        val ctor_Iset_thmss =
-          let
-            fun mk_goal sets ctor set col map =
-              mk_Trueprop_eq (HOLogic.mk_comp (set, ctor),
-                HOLogic.mk_comp (col, Term.list_comb (map, passive_ids @ sets)));
-            val goalss =
-              map3 (fn sets => map4 (mk_goal sets) ctors sets) Isetss_by_range colss map_setss;
-            val setss = map (map2 (fn foldx => fn goal =>
-                Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} =>
-                  unfold_thms_tac ctxt Iset_defs THEN mk_set_tac foldx)
-                |> Thm.close_derivation)
-              ctor_fold_thms) goalss;
-
-            fun mk_simp_goal pas_set act_sets sets ctor z set =
-              Logic.all z (mk_Trueprop_eq (set $ (ctor $ z),
-                mk_union (pas_set $ z,
-                  Library.foldl1 mk_union (map2 (fn X => mk_UNION (X $ z)) act_sets sets))));
-            val simp_goalss =
-              map2 (fn i => fn sets =>
-                map4 (fn Fsets => mk_simp_goal (nth Fsets (i - 1)) (drop m Fsets) sets)
-                  FTs_setss ctors xFs sets)
-                ls Isetss_by_range;
-
-            val ctor_setss = map3 (fn i => map3 (fn set_nats => fn goal => fn set =>
-                Goal.prove_sorry lthy [] [] goal
-                  (K (mk_ctor_set_tac set (nth set_nats (i - 1)) (drop m set_nats)))
-                |> Thm.close_derivation)
-              set_mapss) ls simp_goalss setss;
-          in
-            ctor_setss
-          end;
-
-        fun mk_set_thms ctor_set = (@{thm xt1(3)} OF [ctor_set, @{thm Un_upper1}]) ::
-          map (fn i => (@{thm xt1(3)} OF [ctor_set, @{thm Un_upper2}]) RS
-            (mk_Un_upper n i RS subset_trans) RSN
-            (2, @{thm UN_upper} RS subset_trans))
-            (1 upto n);
-        val set_Iset_thmsss = transpose (map (map mk_set_thms) ctor_Iset_thmss);
-
-        val timer = time (timer "set functions for the new datatypes");
-
-        val cxs = map (SOME o certify lthy) Izs;
-        val Isetss_by_range' =
-          map (map (Term.subst_atomic_types (passiveAs ~~ passiveBs))) Isetss_by_range;
-
-        val Iset_Imap0_thmss =
-          let
-            fun mk_set_map0 f map z set set' =
-              HOLogic.mk_eq (mk_image f $ (set $ z), set' $ (map $ z));
-
-            fun mk_cphi f map z set set' = certify lthy
-              (Term.absfree (dest_Free z) (mk_set_map0 f map z set set'));
-
-            val csetss = map (map (certify lthy)) Isetss_by_range';
-
-            val cphiss = map3 (fn f => fn sets => fn sets' =>
-              (map4 (mk_cphi f) fs_Imaps Izs sets sets')) fs Isetss_by_range Isetss_by_range';
-
-            val inducts = map (fn cphis =>
-              Drule.instantiate' cTs (map SOME cphis @ cxs) ctor_induct_thm) cphiss;
-
-            val goals =
-              map3 (fn f => fn sets => fn sets' =>
-                HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
-                  (map4 (mk_set_map0 f) fs_Imaps Izs sets sets')))
-                  fs Isetss_by_range Isetss_by_range';
-
-            fun mk_tac induct = mk_set_nat_tac m (rtac induct) set_mapss ctor_Imap_thms;
-            val thms =
-              map5 (fn goal => fn csets => fn ctor_sets => fn induct => fn i =>
-                singleton (Proof_Context.export names_lthy lthy)
-                  (Goal.prove_sorry lthy [] [] goal (mk_tac induct csets ctor_sets i))
-                |> Thm.close_derivation)
-              goals csetss ctor_Iset_thmss inducts ls;
-          in
-            map split_conj_thm thms
-          end;
-
-        val Iset_bd_thmss =
-          let
-            fun mk_set_bd z bd set = mk_ordLeq (mk_card_of (set $ z)) bd;
-
-            fun mk_cphi z set = certify lthy (Term.absfree (dest_Free z) (mk_set_bd z sum_bd set));
-
-            val cphiss = map (map2 mk_cphi Izs) Isetss_by_range;
-
-            val inducts = map (fn cphis =>
-              Drule.instantiate' cTs (map SOME cphis @ cxs) ctor_induct_thm) cphiss;
-
-            val goals =
-              map (fn sets =>
-                HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
-                  (map3 mk_set_bd Izs Ibds sets))) Isetss_by_range;
-
-            fun mk_tac induct = mk_set_bd_tac m (rtac induct) sum_Cinfinite set_bd_sumss;
-            val thms =
-              map4 (fn goal => fn ctor_sets => fn induct => fn i =>
-                singleton (Proof_Context.export names_lthy lthy)
-                  (Goal.prove_sorry lthy [] [] goal
-                    (fn {context = ctxt, prems = _} => unfold_thms_tac ctxt Ibd_defs THEN
-                      mk_tac induct ctor_sets i ctxt))
-                |> Thm.close_derivation)
-              goals ctor_Iset_thmss inducts ls;
-          in
-            map split_conj_thm thms
-          end;
-
-        val Imap_cong0_thms =
-          let
-            fun mk_prem z set f g y y' =
-              mk_Ball (set $ z) (Term.absfree y' (HOLogic.mk_eq (f $ y, g $ y)));
-
-            fun mk_map_cong0 sets z fmap gmap =
-              HOLogic.mk_imp
-                (Library.foldr1 HOLogic.mk_conj (map5 (mk_prem z) sets fs fs_copy ys ys'),
-                HOLogic.mk_eq (fmap $ z, gmap $ z));
-
-            fun mk_cphi sets z fmap gmap =
-              certify lthy (Term.absfree (dest_Free z) (mk_map_cong0 sets z fmap gmap));
-
-            val cphis = map4 mk_cphi Isetss_by_bnf Izs fs_Imaps fs_copy_Imaps;
-
-            val induct = Drule.instantiate' cTs (map SOME cphis @ cxs) ctor_induct_thm;
-
-            val goal =
-              HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
-                (map4 mk_map_cong0 Isetss_by_bnf Izs fs_Imaps fs_copy_Imaps));
-
-            val thm = singleton (Proof_Context.export names_lthy lthy)
-              (Goal.prove_sorry lthy [] [] goal
-              (mk_mcong_tac (rtac induct) set_Iset_thmsss map_cong0s ctor_Imap_thms))
-              |> Thm.close_derivation;
-          in
-            split_conj_thm thm
-          end;
-
-        val in_rels = map in_rel_of_bnf bnfs;
-        val in_Irels = map (fn def => trans OF [def, @{thm OO_Grp_alt}] RS @{thm predicate2_eqD})
-            Irel_unabs_defs;
-
-        val ctor_Iset_incl_thmss = map (map hd) set_Iset_thmsss;
-        val ctor_set_Iset_incl_thmsss = map (transpose o map tl) set_Iset_thmsss;
-        val ctor_Iset_thmss' = transpose ctor_Iset_thmss;
-
-        val Irels = mk_Irels passiveAs passiveBs;
-        val Irelphis = map (fn rel => Term.list_comb (rel, Iphis)) Irels;
-        val relphis = map (fn rel => Term.list_comb (rel, Iphis @ Irelphis)) rels;
-        val Irelpsi1s = map (fn rel => Term.list_comb (rel, Ipsi1s)) (mk_Irels passiveAs passiveCs);
-        val Irelpsi2s = map (fn rel => Term.list_comb (rel, Ipsi2s)) (mk_Irels passiveCs passiveBs);
-        val Irelpsi12s = map (fn rel =>
-            Term.list_comb (rel, map2 (curry mk_rel_compp) Ipsi1s Ipsi2s)) Irels;
-
-        val ctor_Irel_thms =
-          let
-            fun mk_goal xF yF ctor ctor' Irelphi relphi = fold_rev Logic.all (xF :: yF :: Iphis)
-              (mk_Trueprop_eq (Irelphi $ (ctor $ xF) $ (ctor' $ yF), relphi $ xF $ yF));
-            val goals = map6 mk_goal xFs yFs ctors ctor's Irelphis relphis;
-          in
-            map12 (fn i => fn goal => fn in_rel => fn map_comp0 => fn map_cong0 =>
-              fn ctor_map => fn ctor_sets => fn ctor_inject => fn ctor_dtor =>
-              fn set_map0s => fn ctor_set_incls => fn ctor_set_set_inclss =>
-              Goal.prove_sorry lthy [] [] goal
-               (K (mk_ctor_rel_tac lthy in_Irels i in_rel map_comp0 map_cong0 ctor_map ctor_sets
-                 ctor_inject ctor_dtor set_map0s ctor_set_incls ctor_set_set_inclss))
-              |> Thm.close_derivation)
-            ks goals in_rels map_comps map_cong0s ctor_Imap_thms ctor_Iset_thmss'
-              ctor_inject_thms ctor_dtor_thms set_mapss ctor_Iset_incl_thmss
-              ctor_set_Iset_incl_thmsss
-          end;
-
-        val le_Irel_OO_thm =
-          let
-            fun mk_le_Irel_OO Irelpsi1 Irelpsi2 Irelpsi12 Iz1 Iz2 =
-              HOLogic.mk_imp (mk_rel_compp (Irelpsi1, Irelpsi2) $ Iz1 $ Iz2,
-                Irelpsi12 $ Iz1 $ Iz2);
-            val goals = map5 mk_le_Irel_OO Irelpsi1s Irelpsi2s Irelpsi12s Izs1 Izs2;
-
-            val cTs = map (SOME o certifyT lthy o TFree) induct2_params;
-            val cxs = map (SOME o certify lthy) (splice Izs1 Izs2);
-            fun mk_cphi z1 z2 goal = SOME (certify lthy (Term.absfree z1 (Term.absfree z2 goal)));
-            val cphis = map3 mk_cphi Izs1' Izs2' goals;
-            val induct = Drule.instantiate' cTs (cphis @ cxs) ctor_induct2_thm;
-
-            val goal = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj goals);
-          in
-            singleton (Proof_Context.export names_lthy lthy)
-              (Goal.prove_sorry lthy [] [] goal
-                (mk_le_rel_OO_tac m induct ctor_nchotomy_thms ctor_Irel_thms rel_mono_strongs
-                  rel_OOs))
-              |> Thm.close_derivation
-          end;
-
-        val timer = time (timer "helpers for BNF properties");
-
-        val map_id0_tacs = map (K o mk_map_id0_tac map_id0s) ctor_Imap_unique_thms;
-        val map_comp0_tacs =
-          map2 (K oo mk_map_comp0_tac map_comps ctor_Imap_thms) ctor_Imap_unique_thms ks;
-        val map_cong0_tacs = map (mk_map_cong0_tac m) Imap_cong0_thms;
-        val set_map0_tacss = map (map (K o mk_set_map0_tac)) (transpose Iset_Imap0_thmss);
-        val bd_co_tacs = replicate n (fn {context = ctxt, prems = _} =>
-          unfold_thms_tac ctxt Ibd_defs THEN mk_bd_card_order_tac bd_card_orders);
-        val bd_cinf_tacs = replicate n (fn {context = ctxt, prems = _} =>
-          unfold_thms_tac ctxt Ibd_defs THEN rtac (sum_Cinfinite RS conjunct1) 1);
-        val set_bd_tacss = map (map (fn thm => K (rtac thm 1))) (transpose Iset_bd_thmss);
-        val le_rel_OO_tacs = map (fn i =>
-          K ((rtac @{thm predicate2I} THEN' etac (le_Irel_OO_thm RS mk_conjunctN n i RS mp)) 1)) ks;
-
-        val rel_OO_Grp_tacs = map (fn def => K (rtac def 1)) Irel_unabs_defs;
-
-        val tacss = map9 zip_axioms map_id0_tacs map_comp0_tacs map_cong0_tacs set_map0_tacss
-          bd_co_tacs bd_cinf_tacs set_bd_tacss le_rel_OO_tacs rel_OO_Grp_tacs;
-
-        fun wit_tac {context = ctxt, prems = _} = unfold_thms_tac ctxt (flat Iwit_defss) THEN
-          mk_wit_tac ctxt n (flat ctor_Iset_thmss) (maps wit_thms_of_bnf bnfs);
-
-        val (Ibnfs, lthy) =
-          fold_map5 (fn tacs => fn map_b => fn rel_b => fn set_bs => fn consts => fn lthy =>
-            bnf_def Do_Inline (user_policy Note_Some) I tacs wit_tac (SOME deads)
-              map_b rel_b set_bs consts lthy
-            |> register_bnf (Local_Theory.full_name lthy b))
-          tacss map_bs rel_bs set_bss
-            ((((((bs ~~ Ts) ~~ Imaps) ~~ Isetss_by_bnf) ~~ Ibds) ~~ Iwitss) ~~ map SOME Irels)
-            lthy;
-
-        val timer = time (timer "registered new datatypes as BNFs");
-
-        val ls' = if m = 1 then [0] else ls
-
-        val Ibnf_common_notes =
-          [(ctor_map_uniqueN, [ctor_Imap_unique_thm])]
-          |> map (fn (thmN, thms) =>
-            ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), []), [(thms, [])]));
-
-        val Ibnf_notes =
-          [(ctor_mapN, map single ctor_Imap_thms),
-          (ctor_relN, map single ctor_Irel_thms),
-          (ctor_set_inclN, ctor_Iset_incl_thmss),
-          (ctor_set_set_inclN, map flat ctor_set_Iset_incl_thmsss)] @
-          map2 (fn i => fn thms => (mk_ctor_setN i, map single thms)) ls' ctor_Iset_thmss
-          |> maps (fn (thmN, thmss) =>
-            map2 (fn b => fn thms =>
-              ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), []), [(thms, [])]))
-            bs thmss)
-      in
-        (timer, Ibnfs, (ctor_Imap_o_thms, ctor_Imap_thms), ctor_Iset_thmss',
-          ctor_Irel_thms, Ibnf_common_notes @ Ibnf_notes, lthy)
-      end;
-
-      val ctor_fold_o_Imap_thms = mk_xtor_un_fold_o_map_thms Least_FP false m ctor_fold_unique_thm
-        ctor_Imap_o_thms (map (mk_pointfree lthy) ctor_fold_thms) sym_map_comps map_cong0s;
-      val ctor_rec_o_Imap_thms = mk_xtor_un_fold_o_map_thms Least_FP true m ctor_rec_unique_thm
-        ctor_Imap_o_thms (map (mk_pointfree lthy) ctor_rec_thms) sym_map_comps map_cong0s;
-
-      val Irels = if m = 0 then map HOLogic.eq_const Ts
-        else map (mk_rel_of_bnf deads passiveAs passiveBs) Ibnfs;
-      val Irel_induct_thm =
-        mk_rel_xtor_co_induct_thm Least_FP rels activeIphis Irels Iphis xFs yFs ctors ctor's
-          (mk_rel_induct_tac m ctor_induct2_thm ks ctor_Irel_thms rel_mono_strongs) lthy;
-
-      val rels = map2 (fn Ds => mk_rel_of_bnf Ds allAs allBs') Dss bnfs;
-      val ctor_fold_transfer_thms =
-        mk_un_fold_transfer_thms Least_FP rels activephis Irels Iphis
-          (mk_folds passiveAs activeAs) (mk_folds passiveBs activeBs)
-          (mk_fold_transfer_tac m Irel_induct_thm (map map_transfer_of_bnf bnfs) ctor_fold_thms)
-          lthy;
-
-      val timer = time (timer "relator induction");
-
-      val common_notes =
-        [(ctor_inductN, [ctor_induct_thm]),
-        (ctor_induct2N, [ctor_induct2_thm]),
-        (rel_inductN, [Irel_induct_thm]),
-        (ctor_fold_transferN, ctor_fold_transfer_thms)]
-        |> map (fn (thmN, thms) =>
-          ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), []), [(thms, [])]));
-
-      val notes =
-        [(ctor_dtorN, ctor_dtor_thms),
-        (ctor_exhaustN, ctor_exhaust_thms),
-        (ctor_foldN, ctor_fold_thms),
-        (ctor_fold_uniqueN, ctor_fold_unique_thms),
-        (ctor_rec_uniqueN, ctor_rec_unique_thms),
-        (ctor_fold_o_mapN, ctor_fold_o_Imap_thms),
-        (ctor_rec_o_mapN, ctor_rec_o_Imap_thms),
-        (ctor_injectN, ctor_inject_thms),
-        (ctor_recN, ctor_rec_thms),
-        (dtor_ctorN, dtor_ctor_thms),
-        (dtor_exhaustN, dtor_exhaust_thms),
-        (dtor_injectN, dtor_inject_thms)]
-        |> map (apsnd (map single))
-        |> maps (fn (thmN, thmss) =>
-          map2 (fn b => fn thms =>
-            ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), []), [(thms, [])]))
-          bs thmss);
-
-    (*FIXME: once the package exports all the necessary high-level characteristic theorems,
-       those should not only be concealed but rather not noted at all*)
-    val maybe_conceal_notes = note_all = false ? map (apfst (apfst Binding.conceal));
-  in
-    timer;
-    ({Ts = Ts, bnfs = Ibnfs, ctors = ctors, dtors = dtors, xtor_co_iterss = transpose [folds, recs],
-      xtor_co_induct = ctor_induct_thm, dtor_ctors = dtor_ctor_thms, ctor_dtors = ctor_dtor_thms,
-      ctor_injects = ctor_inject_thms, dtor_injects = dtor_inject_thms,
-      xtor_map_thms = ctor_Imap_thms, xtor_set_thmss = ctor_Iset_thmss',
-      xtor_rel_thms = ctor_Irel_thms,
-      xtor_co_iter_thmss = transpose [ctor_fold_thms, ctor_rec_thms],
-      xtor_co_iter_o_map_thmss = transpose [ctor_fold_o_Imap_thms, ctor_rec_o_Imap_thms],
-      rel_xtor_co_induct_thm = Irel_induct_thm},
-     lthy |> Local_Theory.notes (maybe_conceal_notes (common_notes @ notes @ Ibnf_notes)) |> snd)
-  end;
-
-val _ =
-  Outer_Syntax.local_theory @{command_spec "datatype_new"} "define new-style inductive datatypes"
-    (parse_co_datatype_cmd Least_FP construct_lfp);
-
-val _ = Outer_Syntax.local_theory @{command_spec "primrec_new"}
-  "define primitive recursive functions"
-  (Parse.fixes -- Parse_Spec.where_alt_specs >> (snd oo uncurry add_primrec_cmd));
-
-end;