src/HOL/Library/rewrite.ML
changeset 59739 4ed50ebf5d36
child 59970 e9f73d87d904
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/rewrite.ML	Wed Mar 18 13:51:33 2015 +0100
@@ -0,0 +1,479 @@
+(* Author: Christoph Traut, Lars Noschinski
+
+  This is a rewrite method supports subterm-selection based on patterns.
+
+  The patterns accepted by rewrite are of the following form:
+    <atom>    ::= <term> | "concl" | "asm" | "for" "(" <names> ")"
+    <pattern> ::= (in <atom> | at <atom>) [<pattern>]
+    <args>    ::= [<pattern>] ("to" <term>) <thms>
+
+  This syntax was clearly inspired by Gonthier's and Tassi's language of
+  patterns but has diverged significantly during its development.
+
+  We also allow introduction of identifiers for bound variables,
+  which can then be used to match arbitary subterms inside abstractions.
+*)
+
+signature REWRITE1 = sig
+  val setup : theory -> theory
+end
+
+structure Rewrite : REWRITE1 =
+struct
+
+datatype ('a, 'b) pattern = At | In | Term of 'a | Concl | Asm | For of 'b list
+
+fun map_term_pattern f (Term x) = f x
+  | map_term_pattern _ (For ss) = (For ss)
+  | map_term_pattern _ At = At
+  | map_term_pattern _ In = In
+  | map_term_pattern _ Concl = Concl
+  | map_term_pattern _ Asm = Asm
+
+
+exception NO_TO_MATCH
+
+fun SEQ_CONCAT (tacq : tactic Seq.seq) : tactic = fn st => Seq.maps (fn tac => tac st) tacq
+
+(* We rewrite subterms using rewrite conversions. These are conversions
+   that also take a context and a list of identifiers for bound variables
+   as parameters. *)
+type rewrite_conv = Proof.context -> (string * term) list -> conv
+
+(* To apply such a rewrite conversion to a subterm of our goal, we use
+   subterm positions, which are just functions that map a rewrite conversion,
+   working on the top level, to a new rewrite conversion, working on
+   a specific subterm.
+
+   During substitution, we are traversing the goal to find subterms that
+   we can rewrite. For each of these subterms, a subterm position is
+   created and later used in creating a conversion that we use to try and
+   rewrite this subterm. *)
+type subterm_position = rewrite_conv -> rewrite_conv
+
+(* A focusterm represents a subterm. It is a tuple (t, p), consisting
+  of the subterm t itself and its subterm position p. *)
+type focusterm = Type.tyenv * term * subterm_position
+
+val dummyN = Name.internal "__dummy"
+val holeN = Name.internal "_hole"
+
+fun prep_meta_eq ctxt =
+  Simplifier.mksimps ctxt #> map Drule.zero_var_indexes
+
+
+(* rewrite conversions *)
+
+fun abs_rewr_cconv ident : subterm_position =
+  let
+    fun add_ident NONE _ l = l
+      | add_ident (SOME name) ct l = (name, Thm.term_of ct) :: l
+    fun inner rewr ctxt idents = CConv.abs_cconv (fn (ct, ctxt) => rewr ctxt (add_ident ident ct idents)) ctxt
+  in inner end
+val fun_rewr_cconv : subterm_position = fn rewr => CConv.fun_cconv oo rewr
+val arg_rewr_cconv : subterm_position = fn rewr => CConv.arg_cconv oo rewr
+
+
+(* focus terms *)
+
+fun ft_abs ctxt (s,T) (tyenv, u, pos) =
+  case try (fastype_of #> dest_funT) u of
+    NONE => raise TERM ("ft_abs: no function type", [u])
+  | SOME (U, _) =>
+  let
+    val tyenv' = if T = dummyT then tyenv else Sign.typ_match (Proof_Context.theory_of ctxt) (T, U) tyenv
+    val x = Free (the_default (Name.internal dummyN) s, Envir.norm_type tyenv' T)
+    val eta_expand_cconv = CConv.rewr_cconv @{thm eta_expand}
+    fun eta_expand rewr ctxt bounds = eta_expand_cconv then_conv rewr ctxt bounds
+    val (u', pos') =
+      case u of
+        Abs (_,_,t') => (subst_bound (x, t'), pos o abs_rewr_cconv s)
+      | _ => (u $ x, pos o eta_expand o abs_rewr_cconv s)
+  in (tyenv', u', pos') end
+  handle Pattern.MATCH => raise TYPE ("ft_abs: types don't match", [T,U], [u])
+
+fun ft_fun _ (tyenv, l $ _, pos) = (tyenv, l, pos o fun_rewr_cconv)
+  | ft_fun ctxt (ft as (_, Abs (_, T, _ $ Bound 0), _)) = (ft_fun ctxt o ft_abs ctxt (NONE, T)) ft
+  | ft_fun _ (_, t, _) = raise TERM ("ft_fun", [t])
+
+fun ft_arg _ (tyenv, _ $ r, pos) = (tyenv, r, pos o arg_rewr_cconv)
+  | ft_arg ctxt (ft as (_, Abs (_, T, _ $ Bound 0), _)) = (ft_arg ctxt o ft_abs ctxt (NONE, T)) ft
+  | ft_arg _ (_, t, _) = raise TERM ("ft_arg", [t])
+
+(* Move to B in !!x_1 ... x_n. B. Do not eta-expand *)
+fun ft_params ctxt (ft as (_, t, _) : focusterm) =
+  case t of
+    Const (@{const_name "Pure.all"}, _) $ Abs (_,T,_) =>
+      (ft_params ctxt o ft_abs ctxt (NONE, T) o ft_arg ctxt) ft
+  | Const (@{const_name "Pure.all"}, _) =>
+      (ft_params ctxt o ft_arg ctxt) ft
+  | _ => ft
+
+fun ft_all ctxt ident (ft as (_, Const (@{const_name "Pure.all"}, T) $ _, _) : focusterm) =
+    let
+      val def_U = T |> dest_funT |> fst |> dest_funT |> fst
+      val ident' = apsnd (the_default (def_U)) ident
+    in (ft_abs ctxt ident' o ft_arg ctxt) ft end
+  | ft_all _ _ (_, t, _) = raise TERM ("ft_all", [t])
+
+fun ft_for ctxt idents (ft as (_, t, _) : focusterm) =
+  let
+    fun f rev_idents (Const (@{const_name "Pure.all"}, _) $ t) =
+        let
+         val (rev_idents', desc) = f rev_idents (case t of Abs (_,_,u) => u | _ => t)
+        in
+          case rev_idents' of
+            [] => ([], desc o ft_all ctxt (NONE, NONE))
+          | (x :: xs) => (xs , desc o ft_all ctxt x)
+        end
+      | f rev_idents _ = (rev_idents, I)
+  in case f (rev idents) t of
+      ([], ft') => SOME (ft' ft)
+    | _ => NONE
+  end
+
+fun ft_concl ctxt (ft as (_, t, _) : focusterm) =
+  case t of
+    (Const (@{const_name "Pure.imp"}, _) $ _) $ _ => (ft_concl ctxt o ft_arg ctxt) ft
+  | _ => ft
+
+fun ft_assm ctxt (ft as (_, t, _) : focusterm) =
+  case t of
+    (Const (@{const_name "Pure.imp"}, _) $ _) $ _ => (ft_concl ctxt o ft_arg ctxt o ft_fun ctxt) ft
+  | _ => raise TERM ("ft_assm", [t])
+
+fun ft_judgment ctxt (ft as (_, t, _) : focusterm) =
+  if Object_Logic.is_judgment (Proof_Context.theory_of ctxt) t
+  then ft_arg ctxt ft
+  else ft
+
+
+(* Return a lazy sequenze of all subterms of the focusterm for which
+   the condition holds. *)
+fun find_subterms ctxt condition (ft as (_, t, _) : focusterm) =
+  let
+    val recurse = find_subterms ctxt condition
+    val recursive_matches = case t of
+        _ $ _ => Seq.append (ft |> ft_fun ctxt |> recurse) (ft |> ft_arg ctxt |> recurse)
+      | Abs (_,T,_) => ft |> ft_abs ctxt (NONE, T) |> recurse
+      | _ => Seq.empty
+  in
+    (* If the condition is met, then the current focusterm is part of the
+       sequence of results. Otherwise, only the results of the recursive
+       application are. *)
+    if condition ft
+    then Seq.cons ft recursive_matches
+    else recursive_matches
+  end
+
+(* Find all subterms that might be a valid point to apply a rule. *)
+fun valid_match_points ctxt =
+  let
+    fun is_valid (l $ _) = is_valid l
+      | is_valid (Abs (_, _, a)) = is_valid a
+      | is_valid (Var _) = false
+      | is_valid (Bound _) = false
+      | is_valid _ = true
+  in
+    find_subterms ctxt (#2 #> is_valid )
+  end
+
+fun is_hole (Var ((name, _), _)) = (name = holeN)
+  | is_hole _ = false
+
+fun is_hole_const (Const (@{const_name rewrite_HOLE}, _)) = true
+  | is_hole_const _ = false
+
+val hole_syntax =
+  let
+    (* Modified variant of Term.replace_hole *)
+    fun replace_hole Ts (Const (@{const_name rewrite_HOLE}, T)) i =
+          (list_comb (Var ((holeN, i), Ts ---> T), map_range Bound (length Ts)), i + 1)
+      | replace_hole Ts (Abs (x, T, t)) i =
+          let val (t', i') = replace_hole (T :: Ts) t i
+          in (Abs (x, T, t'), i') end
+      | replace_hole Ts (t $ u) i =
+          let
+            val (t', i') = replace_hole Ts t i
+            val (u', i'') = replace_hole Ts u i'
+          in (t' $ u', i'') end
+      | replace_hole _ a i = (a, i)
+    fun prep_holes ts = #1 (fold_map (replace_hole []) ts 1)
+  in
+    Context.proof_map (Syntax_Phases.term_check 101 "hole_expansion" (K prep_holes))
+    #> Proof_Context.set_mode Proof_Context.mode_pattern
+  end
+
+(* Find a subterm of the focusterm matching the pattern. *)
+fun find_matches ctxt pattern_list =
+  let
+    fun move_term ctxt (t, off) (ft : focusterm) =
+      let
+        val thy = Proof_Context.theory_of ctxt
+
+        val eta_expands =
+          let val (_, ts) = strip_comb t
+          in map fastype_of (snd (take_suffix is_Var ts)) end
+
+        fun do_match (tyenv, u, pos) =
+          case try (Pattern.match thy (t,u)) (tyenv, Vartab.empty) of
+            NONE => NONE
+          | SOME (tyenv', _) => SOME (off (tyenv', u, pos))
+
+        fun match_argT T u =
+          let val (U, _) = dest_funT (fastype_of u)
+          in try (Sign.typ_match thy (T,U)) end
+          handle TYPE _ => K NONE
+
+        fun desc [] ft = do_match ft
+          | desc (T :: Ts) (ft as (tyenv , u, pos)) =
+            case do_match ft of
+              NONE =>
+                (case match_argT T u tyenv of
+                  NONE => NONE
+                | SOME tyenv' => desc Ts (ft_abs ctxt (NONE, T) (tyenv', u, pos)))
+            | SOME ft => SOME ft
+      in desc eta_expands ft end
+
+    fun seq_unfold f ft =
+      case f ft of
+        NONE => Seq.empty
+      | SOME ft' => Seq.cons ft' (seq_unfold f ft')
+
+    fun apply_pat At = Seq.map (ft_judgment ctxt)
+      | apply_pat In = Seq.maps (valid_match_points ctxt)
+      | apply_pat Asm = Seq.maps (seq_unfold (try (ft_assm ctxt)) o ft_params ctxt)
+      | apply_pat Concl = Seq.map (ft_concl ctxt o ft_params ctxt)
+      | apply_pat (For idents) = Seq.map_filter ((ft_for ctxt (map (apfst SOME) idents)))
+      | apply_pat (Term x) = Seq.map_filter ( (move_term ctxt x))
+
+    fun apply_pats ft = ft
+      |> Seq.single
+      |> fold apply_pat pattern_list
+
+  in
+    apply_pats
+  end
+
+fun instantiate_normalize_env ctxt env thm =
+  let
+    fun certs f = map (apply2 (f ctxt))
+    val prop = Thm.prop_of thm
+    val norm_type = Envir.norm_type o Envir.type_env
+    val insts = Term.add_vars prop []
+      |> map (fn x as (s,T) => (Var (s, norm_type env T), Envir.norm_term env (Var x)))
+      |> certs Thm.cterm_of
+    val tyinsts = Term.add_tvars prop []
+      |> map (fn x => (TVar x, norm_type env (TVar x)))
+      |> certs Thm.ctyp_of
+  in Drule.instantiate_normalize (tyinsts, insts) thm end
+
+fun unify_with_rhs context to env thm =
+  let
+    val (_, rhs) = thm |> Thm.concl_of |> Logic.dest_equals
+    val env' = Pattern.unify context (Logic.mk_term to, Logic.mk_term rhs) env
+      handle Pattern.Unif => raise NO_TO_MATCH
+  in env' end
+
+fun inst_thm_to _ (NONE, _) thm = thm
+  | inst_thm_to (ctxt : Proof.context) (SOME to, env) thm =
+      instantiate_normalize_env ctxt (unify_with_rhs (Context.Proof ctxt) to env thm) thm
+
+fun inst_thm ctxt idents (to, tyenv) thm =
+  let
+    (* Replace any identifiers with their corresponding bound variables. *)
+    val maxidx = Term.maxidx_typs (map (snd o snd) (Vartab.dest tyenv)) 0
+    val env = Envir.Envir {maxidx = maxidx, tenv = Vartab.empty, tyenv = tyenv}
+    val replace_idents =
+      let
+        fun subst ((n1, s)::ss) (t as Free (n2, _)) = if n1 = n2 then s else subst ss t
+          | subst _ t = t
+      in Term.map_aterms (subst idents) end
+
+    val maxidx = Envir.maxidx_of env |> fold Term.maxidx_term (map_filter I [to])
+    val thm' = Thm.incr_indexes (maxidx + 1) thm
+  in SOME (inst_thm_to ctxt (Option.map replace_idents to, env) thm') end
+  handle NO_TO_MATCH => NONE
+
+(* Rewrite in subgoal i. *)
+fun rewrite_goal_with_thm ctxt (pattern, (to, orig_ctxt)) rules = SUBGOAL (fn (t,i) =>
+  let
+    val matches = find_matches ctxt pattern (Vartab.empty, t, I)
+
+    fun rewrite_conv insty ctxt bounds =
+      CConv.rewrs_cconv (map_filter (inst_thm ctxt bounds insty) rules)
+
+    val export = singleton (Proof_Context.export ctxt orig_ctxt)
+
+    fun distinct_prems th =
+      case Seq.pull (distinct_subgoals_tac th) of
+        NONE => th
+      | SOME (th', _) => th'
+
+    fun tac (tyenv, _, position) = CCONVERSION
+      (distinct_prems o export o position (rewrite_conv (to, tyenv)) ctxt []) i
+  in
+    SEQ_CONCAT (Seq.map tac matches)
+  end)
+
+fun rewrite_tac ctxt pattern thms =
+  let
+    val thms' = maps (prep_meta_eq ctxt) thms
+    val tac = rewrite_goal_with_thm ctxt pattern thms'
+  in tac end
+
+val setup =
+  let
+
+    fun mk_fix s = (Binding.name s, NONE, NoSyn)
+
+    val raw_pattern : (string, binding * string option * mixfix) pattern list parser =
+      let
+        val sep = (Args.$$$ "at" >> K At) || (Args.$$$ "in" >> K In)
+        val atom =  (Args.$$$ "asm" >> K Asm) ||
+          (Args.$$$ "concl" >> K Concl) ||
+          (Args.$$$ "for" |-- Args.parens (Scan.optional Parse.fixes []) >> For) ||
+          (Parse.term >> Term)
+        val sep_atom = sep -- atom >> (fn (s,a) => [s,a])
+
+        fun append_default [] = [Concl, In]
+          | append_default (ps as Term _ :: _) = Concl :: In :: ps
+          | append_default ps = ps
+
+      in Scan.repeat sep_atom >> (flat #> rev #> append_default) end
+
+    fun ctxt_lift (scan : 'a parser) f = fn (ctxt : Context.generic, toks) =>
+      let
+        val (r, toks') = scan toks
+        val (r', ctxt') = Context.map_proof_result (fn ctxt => f ctxt r) ctxt
+      in (r', (ctxt', toks' : Token.T list))end
+
+    fun read_fixes fixes ctxt =
+      let fun read_typ (b, rawT, mx) = (b, Option.map (Syntax.read_typ ctxt) rawT, mx)
+      in Proof_Context.add_fixes (map read_typ fixes) ctxt end
+
+    fun prep_pats ctxt (ps : (string, binding * string option * mixfix) pattern list) =
+      let
+
+        fun add_constrs ctxt n (Abs (x, T, t)) =
+            let
+              val (x', ctxt') = yield_singleton Proof_Context.add_fixes (mk_fix x) ctxt
+            in
+              (case add_constrs ctxt' (n+1) t of
+                NONE => NONE
+              | SOME ((ctxt'', n', xs), t') =>
+                  let
+                    val U = Type_Infer.mk_param n []
+                    val u = Type.constraint (U --> dummyT) (Abs (x, T, t'))
+                  in SOME ((ctxt'', n', (x', U) :: xs), u) end)
+            end
+          | add_constrs ctxt n (l $ r) =
+            (case add_constrs ctxt n l of
+              SOME (c, l') => SOME (c, l' $ r)
+            | NONE =>
+              (case add_constrs ctxt n r of
+                SOME (c, r') => SOME (c, l $ r')
+              | NONE => NONE))
+          | add_constrs ctxt n t =
+            if is_hole_const t then SOME ((ctxt, n, []), t) else NONE
+
+        fun prep (Term s) (n, ctxt) =
+            let
+              val t = Syntax.parse_term ctxt s
+              val ((ctxt', n', bs), t') =
+                the_default ((ctxt, n, []), t) (add_constrs ctxt (n+1) t)
+            in (Term (t', bs), (n', ctxt')) end
+          | prep (For ss) (n, ctxt) =
+            let val (ns, ctxt') = read_fixes ss ctxt
+            in (For ns, (n, ctxt')) end
+          | prep At (n,ctxt) = (At, (n, ctxt))
+          | prep In (n,ctxt) = (In, (n, ctxt))
+          | prep Concl (n,ctxt) = (Concl, (n, ctxt))
+          | prep Asm (n,ctxt) = (Asm, (n, ctxt))
+
+        val (xs, (_, ctxt')) = fold_map prep ps (0, ctxt)
+
+      in (xs, ctxt') end
+
+    fun prep_args ctxt (((raw_pats, raw_to), raw_ths)) =
+      let
+
+        fun interpret_term_patterns ctxt =
+          let
+
+            fun descend_hole fixes (Abs (_, _, t)) =
+                (case descend_hole fixes t of
+                  NONE => NONE
+                | SOME (fix :: fixes', pos) => SOME (fixes', pos o ft_abs ctxt (apfst SOME fix))
+                | SOME ([], _) => raise Match (* XXX -- check phases modified binding *))
+              | descend_hole fixes (t as l $ r) =
+                let val (f, _) = strip_comb t
+                in
+                  if is_hole f
+                  then SOME (fixes, I)
+                  else
+                    (case descend_hole fixes l of
+                      SOME (fixes', pos) => SOME (fixes', pos o ft_fun ctxt)
+                    | NONE =>
+                      (case descend_hole fixes r of
+                        SOME (fixes', pos) => SOME (fixes', pos o ft_arg ctxt)
+                      | NONE => NONE))
+                end
+              | descend_hole fixes t =
+                if is_hole t then SOME (fixes, I) else NONE
+
+            fun f (t, fixes) = Term (t, (descend_hole (rev fixes) #> the_default ([], I) #> snd) t)
+
+          in map (map_term_pattern f) end
+
+        fun check_terms ctxt ps to =
+          let
+            fun safe_chop (0: int) xs = ([], xs)
+              | safe_chop n (x :: xs) = chop (n - 1) xs |>> cons x
+              | safe_chop _ _ = raise Match
+
+            fun reinsert_pat _ (Term (_, cs)) (t :: ts) =
+                let val (cs', ts') = safe_chop (length cs) ts
+                in (Term (t, map dest_Free cs'), ts') end
+              | reinsert_pat _ (Term _) [] = raise Match
+              | reinsert_pat ctxt (For ss) ts =
+                let val fixes = map (fn s => (s, Variable.default_type ctxt s)) ss
+                in (For fixes, ts) end
+              | reinsert_pat _ At ts = (At, ts)
+              | reinsert_pat _ In ts = (In, ts)
+              | reinsert_pat _ Concl ts = (Concl, ts)
+              | reinsert_pat _ Asm ts = (Asm, ts)
+
+            fun free_constr (s,T) = Type.constraint T (Free (s, dummyT))
+            fun mk_free_constrs (Term (t, cs)) = t :: map free_constr cs
+              | mk_free_constrs _ = []
+
+            val ts = maps mk_free_constrs ps @ map_filter I [to]
+              |> Syntax.check_terms (hole_syntax ctxt)
+            val ctxt' = fold Variable.declare_term ts ctxt
+            val (ps', (to', ts')) = fold_map (reinsert_pat ctxt') ps ts
+              ||> (fn xs => case to of NONE => (NONE, xs) | SOME _ => (SOME (hd xs), tl xs))
+            val _ = case ts' of (_ :: _) => raise Match | [] => ()
+          in ((ps', to'), ctxt') end
+
+        val (pats, ctxt') = prep_pats ctxt raw_pats
+
+        val ths = Attrib.eval_thms ctxt' raw_ths
+        val to = Option.map (Syntax.parse_term ctxt') raw_to
+
+        val ((pats', to'), ctxt'') = check_terms ctxt' pats to
+        val pats'' = interpret_term_patterns ctxt'' pats'
+
+      in ((pats'', ths, (to', ctxt)), ctxt'') end
+
+    val to_parser = Scan.option ((Args.$$$ "to") |-- Parse.term)
+
+    val subst_parser =
+      let val scan = raw_pattern -- to_parser -- Parse.xthms1
+      in ctxt_lift scan prep_args end
+  in
+    Method.setup @{binding rewrite} (subst_parser >>
+      (fn (pattern, inthms, inst) => fn ctxt => SIMPLE_METHOD' (rewrite_tac ctxt (pattern, inst) inthms)))
+      "single-step rewriting, allowing subterm selection via patterns."
+  end
+end