src/Doc/ProgProve/Isar.thy
changeset 48985 5386df44a037
parent 48947 7eee8b2d2099
child 49837 007f03af6c6a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Doc/ProgProve/Isar.thy	Tue Aug 28 18:57:32 2012 +0200
@@ -0,0 +1,997 @@
+(*<*)
+theory Isar
+imports LaTeXsugar
+begin
+ML{* quick_and_dirty := true *}
+(*>*)
+text{*
+Apply-scripts are unreadable and hard to maintain. The language of choice
+for larger proofs is \concept{Isar}. The two key features of Isar are:
+\begin{itemize}
+\item It is structured, not linear.
+\item It is readable without running it because
+you need to state what you are proving at any given point.
+\end{itemize}
+Whereas apply-scripts are like assembly language programs, Isar proofs
+are like structured programs with comments. A typical Isar proof looks like this:
+*}text{*
+\begin{tabular}{@ {}l}
+\isacom{proof}\\
+\quad\isacom{assume} @{text"\""}$\mathit{formula}_0$@{text"\""}\\
+\quad\isacom{have} @{text"\""}$\mathit{formula}_1$@{text"\""} \quad\isacom{by} @{text simp}\\
+\quad\vdots\\
+\quad\isacom{have} @{text"\""}$\mathit{formula}_n$@{text"\""} \quad\isacom{by} @{text blast}\\
+\quad\isacom{show} @{text"\""}$\mathit{formula}_{n+1}$@{text"\""} \quad\isacom{by} @{text \<dots>}\\
+\isacom{qed}
+\end{tabular}
+*}text{*
+It proves $\mathit{formula}_0 \Longrightarrow \mathit{formula}_{n+1}$
+(provided each proof step succeeds).
+The intermediate \isacom{have} statements are merely stepping stones
+on the way towards the \isacom{show} statement that proves the actual
+goal. In more detail, this is the Isar core syntax:
+\medskip
+
+\begin{tabular}{@ {}lcl@ {}}
+\textit{proof} &=& \isacom{by} \textit{method}\\
+      &$\mid$& \isacom{proof} [\textit{method}] \ \textit{step}$^*$ \ \isacom{qed}
+\end{tabular}
+\medskip
+
+\begin{tabular}{@ {}lcl@ {}}
+\textit{step} &=& \isacom{fix} \textit{variables} \\
+      &$\mid$& \isacom{assume} \textit{proposition} \\
+      &$\mid$& [\isacom{from} \textit{fact}$^+$] (\isacom{have} $\mid$ \isacom{show}) \ \textit{proposition} \ \textit{proof}
+\end{tabular}
+\medskip
+
+\begin{tabular}{@ {}lcl@ {}}
+\textit{proposition} &=& [\textit{name}:] @{text"\""}\textit{formula}@{text"\""}
+\end{tabular}
+\medskip
+
+\begin{tabular}{@ {}lcl@ {}}
+\textit{fact} &=& \textit{name} \ $\mid$ \ \dots
+\end{tabular}
+\medskip
+
+\noindent A proof can either be an atomic \isacom{by} with a single proof
+method which must finish off the statement being proved, for example @{text
+auto}.  Or it can be a \isacom{proof}--\isacom{qed} block of multiple
+steps. Such a block can optionally begin with a proof method that indicates
+how to start off the proof, e.g.\ \mbox{@{text"(induction xs)"}}.
+
+A step either assumes a proposition or states a proposition
+together with its proof. The optional \isacom{from} clause
+indicates which facts are to be used in the proof.
+Intermediate propositions are stated with \isacom{have}, the overall goal
+with \isacom{show}. A step can also introduce new local variables with
+\isacom{fix}. Logically, \isacom{fix} introduces @{text"\<And>"}-quantified
+variables, \isacom{assume} introduces the assumption of an implication
+(@{text"\<Longrightarrow>"}) and \isacom{have}/\isacom{show} the conclusion.
+
+Propositions are optionally named formulas. These names can be referred to in
+later \isacom{from} clauses. In the simplest case, a fact is such a name.
+But facts can also be composed with @{text OF} and @{text of} as shown in
+\S\ref{sec:forward-proof}---hence the \dots\ in the above grammar.  Note
+that assumptions, intermediate \isacom{have} statements and global lemmas all
+have the same status and are thus collectively referred to as
+\concept{facts}.
+
+Fact names can stand for whole lists of facts. For example, if @{text f} is
+defined by command \isacom{fun}, @{text"f.simps"} refers to the whole list of
+recursion equations defining @{text f}. Individual facts can be selected by
+writing @{text"f.simps(2)"}, whole sublists by @{text"f.simps(2-4)"}.
+
+
+\section{Isar by example}
+
+We show a number of proofs of Cantor's theorem that a function from a set to
+its powerset cannot be surjective, illustrating various features of Isar. The
+constant @{const surj} is predefined.
+*}
+
+lemma "\<not> surj(f :: 'a \<Rightarrow> 'a set)"
+proof
+  assume 0: "surj f"
+  from 0 have 1: "\<forall>A. \<exists>a. A = f a" by(simp add: surj_def)
+  from 1 have 2: "\<exists>a. {x. x \<notin> f x} = f a" by blast
+  from 2 show "False" by blast
+qed
+
+text{*
+The \isacom{proof} command lacks an explicit method how to perform
+the proof. In such cases Isabelle tries to use some standard introduction
+rule, in the above case for @{text"\<not>"}:
+\[
+\inferrule{
+\mbox{@{thm (prem 1) notI}}}
+{\mbox{@{thm (concl) notI}}}
+\]
+In order to prove @{prop"~ P"}, assume @{text P} and show @{text False}.
+Thus we may assume @{prop"surj f"}. The proof shows that names of propositions
+may be (single!) digits---meaningful names are hard to invent and are often
+not necessary. Both \isacom{have} steps are obvious. The second one introduces
+the diagonal set @{term"{x. x \<notin> f x}"}, the key idea in the proof.
+If you wonder why @{text 2} directly implies @{text False}: from @{text 2}
+it follows that @{prop"a \<notin> f a \<longleftrightarrow> a \<in> f a"}.
+
+\subsection{@{text this}, @{text then}, @{text hence} and @{text thus}}
+
+Labels should be avoided. They interrupt the flow of the reader who has to
+scan the context for the point where the label was introduced. Ideally, the
+proof is a linear flow, where the output of one step becomes the input of the
+next step, piping the previously proved fact into the next proof, just like
+in a UNIX pipe. In such cases the predefined name @{text this} can be used
+to refer to the proposition proved in the previous step. This allows us to
+eliminate all labels from our proof (we suppress the \isacom{lemma} statement):
+*}
+(*<*)
+lemma "\<not> surj(f :: 'a \<Rightarrow> 'a set)"
+(*>*)
+proof
+  assume "surj f"
+  from this have "\<exists>a. {x. x \<notin> f x} = f a" by(auto simp: surj_def)
+  from this show "False" by blast
+qed
+
+text{* We have also taken the opportunity to compress the two \isacom{have}
+steps into one.
+
+To compact the text further, Isar has a few convenient abbreviations:
+\medskip
+
+\begin{tabular}{rcl}
+\isacom{then} &=& \isacom{from} @{text this}\\
+\isacom{thus} &=& \isacom{then} \isacom{show}\\
+\isacom{hence} &=& \isacom{then} \isacom{have}
+\end{tabular}
+\medskip
+
+\noindent
+With the help of these abbreviations the proof becomes
+*}
+(*<*)
+lemma "\<not> surj(f :: 'a \<Rightarrow> 'a set)"
+(*>*)
+proof
+  assume "surj f"
+  hence "\<exists>a. {x. x \<notin> f x} = f a" by(auto simp: surj_def)
+  thus "False" by blast
+qed
+text{*
+
+There are two further linguistic variations:
+\medskip
+
+\begin{tabular}{rcl}
+(\isacom{have}$\mid$\isacom{show}) \ \textit{prop} \ \isacom{using} \ \textit{facts}
+&=&
+\isacom{from} \ \textit{facts} \ (\isacom{have}$\mid$\isacom{show}) \ \textit{prop}\\
+\isacom{with} \ \textit{facts} &=& \isacom{from} \ \textit{facts} \isa{this}
+\end{tabular}
+\medskip
+
+\noindent The \isacom{using} idiom de-emphasizes the used facts by moving them
+behind the proposition.
+
+\subsection{Structured lemma statements: \isacom{fixes}, \isacom{assumes}, \isacom{shows}}
+
+Lemmas can also be stated in a more structured fashion. To demonstrate this
+feature with Cantor's theorem, we rephrase @{prop"\<not> surj f"}
+a little:
+*}
+
+lemma
+  fixes f :: "'a \<Rightarrow> 'a set"
+  assumes s: "surj f"
+  shows "False"
+
+txt{* The optional \isacom{fixes} part allows you to state the types of
+variables up front rather than by decorating one of their occurrences in the
+formula with a type constraint. The key advantage of the structured format is
+the \isacom{assumes} part that allows you to name each assumption; multiple
+assumptions can be separated by \isacom{and}. The
+\isacom{shows} part gives the goal. The actual theorem that will come out of
+the proof is @{prop"surj f \<Longrightarrow> False"}, but during the proof the assumption
+@{prop"surj f"} is available under the name @{text s} like any other fact.
+*}
+
+proof -
+  have "\<exists> a. {x. x \<notin> f x} = f a" using s
+    by(auto simp: surj_def)
+  thus "False" by blast
+qed
+
+text{* In the \isacom{have} step the assumption @{prop"surj f"} is now
+referenced by its name @{text s}. The duplication of @{prop"surj f"} in the
+above proofs (once in the statement of the lemma, once in its proof) has been
+eliminated.
+
+\begin{warn}
+Note the dash after the \isacom{proof}
+command.  It is the null method that does nothing to the goal. Leaving it out
+would ask Isabelle to try some suitable introduction rule on the goal @{const
+False}---but there is no suitable introduction rule and \isacom{proof}
+would fail.
+\end{warn}
+
+Stating a lemma with \isacom{assumes}-\isacom{shows} implicitly introduces the
+name @{text assms} that stands for the list of all assumptions. You can refer
+to individual assumptions by @{text"assms(1)"}, @{text"assms(2)"} etc,
+thus obviating the need to name them individually.
+
+\section{Proof patterns}
+
+We show a number of important basic proof patterns. Many of them arise from
+the rules of natural deduction that are applied by \isacom{proof} by
+default. The patterns are phrased in terms of \isacom{show} but work for
+\isacom{have} and \isacom{lemma}, too.
+
+We start with two forms of \concept{case analysis}:
+starting from a formula @{text P} we have the two cases @{text P} and
+@{prop"~P"}, and starting from a fact @{prop"P \<or> Q"}
+we have the two cases @{text P} and @{text Q}:
+*}text_raw{*
+\begin{tabular}{@ {}ll@ {}}
+\begin{minipage}[t]{.4\textwidth}
+\isa{%
+*}
+(*<*)lemma "R" proof-(*>*)
+show "R"
+proof cases
+  assume "P"
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "R" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+next
+  assume "\<not> P"
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "R" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+qed(*<*)oops(*>*)
+text_raw {* }
+\end{minipage}
+&
+\begin{minipage}[t]{.4\textwidth}
+\isa{%
+*}
+(*<*)lemma "R" proof-(*>*)
+have "P \<or> Q" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+then show "R"
+proof
+  assume "P"
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "R" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+next
+  assume "Q"
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "R" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+qed(*<*)oops(*>*)
+
+text_raw {* }
+\end{minipage}
+\end{tabular}
+\medskip
+\begin{isamarkuptext}%
+How to prove a logical equivalence:
+\end{isamarkuptext}%
+\isa{%
+*}
+(*<*)lemma "P\<longleftrightarrow>Q" proof-(*>*)
+show "P \<longleftrightarrow> Q"
+proof
+  assume "P"
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "Q" (*<*)sorry(*>*) txt_raw{*\ $\dots$\\*}
+next
+  assume "Q"
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "P" (*<*)sorry(*>*) txt_raw{*\ $\dots$\\*}
+qed(*<*)qed(*>*)
+text_raw {* }
+\medskip
+\begin{isamarkuptext}%
+Proofs by contradiction:
+\end{isamarkuptext}%
+\begin{tabular}{@ {}ll@ {}}
+\begin{minipage}[t]{.4\textwidth}
+\isa{%
+*}
+(*<*)lemma "\<not> P" proof-(*>*)
+show "\<not> P"
+proof
+  assume "P"
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "False" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+qed(*<*)oops(*>*)
+
+text_raw {* }
+\end{minipage}
+&
+\begin{minipage}[t]{.4\textwidth}
+\isa{%
+*}
+(*<*)lemma "P" proof-(*>*)
+show "P"
+proof (rule ccontr)
+  assume "\<not>P"
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "False" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+qed(*<*)oops(*>*)
+
+text_raw {* }
+\end{minipage}
+\end{tabular}
+\medskip
+\begin{isamarkuptext}%
+The name @{thm[source] ccontr} stands for ``classical contradiction''.
+
+How to prove quantified formulas:
+\end{isamarkuptext}%
+\begin{tabular}{@ {}ll@ {}}
+\begin{minipage}[t]{.4\textwidth}
+\isa{%
+*}
+(*<*)lemma "ALL x. P x" proof-(*>*)
+show "\<forall>x. P(x)"
+proof
+  fix x
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "P(x)" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+qed(*<*)oops(*>*)
+
+text_raw {* }
+\end{minipage}
+&
+\begin{minipage}[t]{.4\textwidth}
+\isa{%
+*}
+(*<*)lemma "EX x. P(x)" proof-(*>*)
+show "\<exists>x. P(x)"
+proof
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "P(witness)" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+qed
+(*<*)oops(*>*)
+
+text_raw {* }
+\end{minipage}
+\end{tabular}
+\medskip
+\begin{isamarkuptext}%
+In the proof of \noquotes{@{prop[source]"\<forall>x. P(x)"}},
+the step \isacom{fix}~@{text x} introduces a locally fixed variable @{text x}
+into the subproof, the proverbial ``arbitrary but fixed value''.
+Instead of @{text x} we could have chosen any name in the subproof.
+In the proof of \noquotes{@{prop[source]"\<exists>x. P(x)"}},
+@{text witness} is some arbitrary
+term for which we can prove that it satisfies @{text P}.
+
+How to reason forward from \noquotes{@{prop[source] "\<exists>x. P(x)"}}:
+\end{isamarkuptext}%
+*}
+(*<*)lemma True proof- assume 1: "EX x. P x"(*>*)
+have "\<exists>x. P(x)" (*<*)by(rule 1)(*>*)txt_raw{*\ $\dots$\\*}
+then obtain x where p: "P(x)" by blast
+(*<*)oops(*>*)
+text{*
+After the \isacom{obtain} step, @{text x} (we could have chosen any name)
+is a fixed local
+variable, and @{text p} is the name of the fact
+\noquotes{@{prop[source] "P(x)"}}.
+This pattern works for one or more @{text x}.
+As an example of the \isacom{obtain} command, here is the proof of
+Cantor's theorem in more detail:
+*}
+
+lemma "\<not> surj(f :: 'a \<Rightarrow> 'a set)"
+proof
+  assume "surj f"
+  hence  "\<exists>a. {x. x \<notin> f x} = f a" by(auto simp: surj_def)
+  then obtain a where  "{x. x \<notin> f x} = f a"  by blast
+  hence  "a \<notin> f a \<longleftrightarrow> a \<in> f a"  by blast
+  thus "False" by blast
+qed
+
+text_raw{*
+\begin{isamarkuptext}%
+
+Finally, how to prove set equality and subset relationship:
+\end{isamarkuptext}%
+\begin{tabular}{@ {}ll@ {}}
+\begin{minipage}[t]{.4\textwidth}
+\isa{%
+*}
+(*<*)lemma "A = (B::'a set)" proof-(*>*)
+show "A = B"
+proof
+  show "A \<subseteq> B" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+next
+  show "B \<subseteq> A" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+qed(*<*)qed(*>*)
+
+text_raw {* }
+\end{minipage}
+&
+\begin{minipage}[t]{.4\textwidth}
+\isa{%
+*}
+(*<*)lemma "A <= (B::'a set)" proof-(*>*)
+show "A \<subseteq> B"
+proof
+  fix x
+  assume "x \<in> A"
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "x \<in> B" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+qed(*<*)qed(*>*)
+
+text_raw {* }
+\end{minipage}
+\end{tabular}
+\begin{isamarkuptext}%
+\section{Streamlining proofs}
+
+\subsection{Pattern matching and quotations}
+
+In the proof patterns shown above, formulas are often duplicated.
+This can make the text harder to read, write and maintain. Pattern matching
+is an abbreviation mechanism to avoid such duplication. Writing
+\begin{quote}
+\isacom{show} \ \textit{formula} @{text"("}\isacom{is} \textit{pattern}@{text")"}
+\end{quote}
+matches the pattern against the formula, thus instantiating the unknowns in
+the pattern for later use. As an example, consider the proof pattern for
+@{text"\<longleftrightarrow>"}:
+\end{isamarkuptext}%
+*}
+(*<*)lemma "formula\<^isub>1 \<longleftrightarrow> formula\<^isub>2" proof-(*>*)
+show "formula\<^isub>1 \<longleftrightarrow> formula\<^isub>2" (is "?L \<longleftrightarrow> ?R")
+proof
+  assume "?L"
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "?R" (*<*)sorry(*>*) txt_raw{*\ $\dots$\\*}
+next
+  assume "?R"
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show "?L" (*<*)sorry(*>*) txt_raw{*\ $\dots$\\*}
+qed(*<*)qed(*>*)
+
+text{* Instead of duplicating @{text"formula\<^isub>i"} in the text, we introduce
+the two abbreviations @{text"?L"} and @{text"?R"} by pattern matching.
+Pattern matching works wherever a formula is stated, in particular
+with \isacom{have} and \isacom{lemma}.
+
+The unknown @{text"?thesis"} is implicitly matched against any goal stated by
+\isacom{lemma} or \isacom{show}. Here is a typical example: *}
+
+lemma "formula"
+proof -
+  txt_raw{*\\\mbox{}\quad$\vdots$\\\mbox{}\hspace{-1.4ex}*}
+  show ?thesis (*<*)sorry(*>*) txt_raw{*\ $\dots$\\*}
+qed
+
+text{* 
+Unknowns can also be instantiated with \isacom{let} commands
+\begin{quote}
+\isacom{let} @{text"?t"} = @{text"\""}\textit{some-big-term}@{text"\""}
+\end{quote}
+Later proof steps can refer to @{text"?t"}:
+\begin{quote}
+\isacom{have} @{text"\""}\dots @{text"?t"} \dots@{text"\""}
+\end{quote}
+\begin{warn}
+Names of facts are introduced with @{text"name:"} and refer to proved
+theorems. Unknowns @{text"?X"} refer to terms or formulas.
+\end{warn}
+
+Although abbreviations shorten the text, the reader needs to remember what
+they stand for. Similarly for names of facts. Names like @{text 1}, @{text 2}
+and @{text 3} are not helpful and should only be used in short proofs. For
+longer proofs, descriptive names are better. But look at this example:
+\begin{quote}
+\isacom{have} \ @{text"x_gr_0: \"x > 0\""}\\
+$\vdots$\\
+\isacom{from} @{text "x_gr_0"} \dots
+\end{quote}
+The name is longer than the fact it stands for! Short facts do not need names,
+one can refer to them easily by quoting them:
+\begin{quote}
+\isacom{have} \ @{text"\"x > 0\""}\\
+$\vdots$\\
+\isacom{from} @{text "`x>0`"} \dots
+\end{quote}
+Note that the quotes around @{text"x>0"} are \concept{back quotes}.
+They refer to the fact not by name but by value.
+
+\subsection{\isacom{moreover}}
+
+Sometimes one needs a number of facts to enable some deduction. Of course
+one can name these facts individually, as shown on the right,
+but one can also combine them with \isacom{moreover}, as shown on the left:
+*}text_raw{*
+\begin{tabular}{@ {}ll@ {}}
+\begin{minipage}[t]{.4\textwidth}
+\isa{%
+*}
+(*<*)lemma "P" proof-(*>*)
+have "P\<^isub>1" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+moreover have "P\<^isub>2" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+moreover
+txt_raw{*\\$\vdots$\\\hspace{-1.4ex}*}(*<*)have "True" ..(*>*)
+moreover have "P\<^isub>n" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+ultimately have "P"  (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+(*<*)oops(*>*)
+
+text_raw {* }
+\end{minipage}
+&
+\qquad
+\begin{minipage}[t]{.4\textwidth}
+\isa{%
+*}
+(*<*)lemma "P" proof-(*>*)
+have lab\<^isub>1: "P\<^isub>1" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+have lab\<^isub>2: "P\<^isub>2" (*<*)sorry(*>*)txt_raw{*\ $\dots$*}
+txt_raw{*\\$\vdots$\\\hspace{-1.4ex}*}
+have lab\<^isub>n: "P\<^isub>n" (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+from lab\<^isub>1 lab\<^isub>2 txt_raw{*\ $\dots$\\*}
+have "P"  (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+(*<*)oops(*>*)
+
+text_raw {* }
+\end{minipage}
+\end{tabular}
+\begin{isamarkuptext}%
+The \isacom{moreover} version is no shorter but expresses the structure more
+clearly and avoids new names.
+
+\subsection{Raw proof blocks}
+
+Sometimes one would like to prove some lemma locally within a proof.
+A lemma that shares the current context of assumptions but that
+has its own assumptions and is generalized over its locally fixed
+variables at the end. This is what a \concept{raw proof block} does:
+\begin{quote}
+@{text"{"} \isacom{fix} @{text"x\<^isub>1 \<dots> x\<^isub>n"}\\
+\mbox{}\ \ \ \isacom{assume} @{text"A\<^isub>1 \<dots> A\<^isub>m"}\\
+\mbox{}\ \ \ $\vdots$\\
+\mbox{}\ \ \ \isacom{have} @{text"B"}\\
+@{text"}"}
+\end{quote}
+proves @{text"\<lbrakk> A\<^isub>1; \<dots> ; A\<^isub>m \<rbrakk> \<Longrightarrow> B"}
+where all @{text"x\<^isub>i"} have been replaced by unknowns @{text"?x\<^isub>i"}.
+\begin{warn}
+The conclusion of a raw proof block is \emph{not} indicated by \isacom{show}
+but is simply the final \isacom{have}.
+\end{warn}
+
+As an example we prove a simple fact about divisibility on integers.
+The definition of @{text "dvd"} is @{thm dvd_def}.
+\end{isamarkuptext}%
+*}
+
+lemma fixes a b :: int assumes "b dvd (a+b)" shows "b dvd a"
+proof -
+  { fix k assume k: "a+b = b*k"
+    have "\<exists>k'. a = b*k'"
+    proof
+      show "a = b*(k - 1)" using k by(simp add: algebra_simps)
+    qed }
+  then show ?thesis using assms by(auto simp add: dvd_def)
+qed
+
+text{* Note that the result of a raw proof block has no name. In this example
+it was directly piped (via \isacom{then}) into the final proof, but it can
+also be named for later reference: you simply follow the block directly by a
+\isacom{note} command:
+\begin{quote}
+\isacom{note} \ @{text"name = this"}
+\end{quote}
+This introduces a new name @{text name} that refers to @{text this},
+the fact just proved, in this case the preceding block. In general,
+\isacom{note} introduces a new name for one or more facts.
+
+\section{Case analysis and induction}
+
+\subsection{Datatype case analysis}
+
+We have seen case analysis on formulas. Now we want to distinguish
+which form some term takes: is it @{text 0} or of the form @{term"Suc n"},
+is it @{term"[]"} or of the form @{term"x#xs"}, etc. Here is a typical example
+proof by case analysis on the form of @{text xs}:
+*}
+
+lemma "length(tl xs) = length xs - 1"
+proof (cases xs)
+  assume "xs = []"
+  thus ?thesis by simp
+next
+  fix y ys assume "xs = y#ys"
+  thus ?thesis by simp
+qed
+
+text{* Function @{text tl} (''tail'') is defined by @{thm tl.simps(1)} and
+@{thm tl.simps(2)}. Note that the result type of @{const length} is @{typ nat}
+and @{prop"0 - 1 = (0::nat)"}.
+
+This proof pattern works for any term @{text t} whose type is a datatype.
+The goal has to be proved for each constructor @{text C}:
+\begin{quote}
+\isacom{fix} \ @{text"x\<^isub>1 \<dots> x\<^isub>n"} \isacom{assume} @{text"\"t = C x\<^isub>1 \<dots> x\<^isub>n\""}
+\end{quote}
+Each case can be written in a more compact form by means of the \isacom{case}
+command:
+\begin{quote}
+\isacom{case} @{text "(C x\<^isub>1 \<dots> x\<^isub>n)"}
+\end{quote}
+This is equivalent to the explicit \isacom{fix}-\isacom{assume} line
+but also gives the assumption @{text"\"t = C x\<^isub>1 \<dots> x\<^isub>n\""} a name: @{text C},
+like the constructor.
+Here is the \isacom{case} version of the proof above:
+*}
+(*<*)lemma "length(tl xs) = length xs - 1"(*>*)
+proof (cases xs)
+  case Nil
+  thus ?thesis by simp
+next
+  case (Cons y ys)
+  thus ?thesis by simp
+qed
+
+text{* Remember that @{text Nil} and @{text Cons} are the alphanumeric names
+for @{text"[]"} and @{text"#"}. The names of the assumptions
+are not used because they are directly piped (via \isacom{thus})
+into the proof of the claim.
+
+\subsection{Structural induction}
+
+We illustrate structural induction with an example based on natural numbers:
+the sum (@{text"\<Sum>"}) of the first @{text n} natural numbers
+(@{text"{0..n::nat}"}) is equal to \mbox{@{term"n*(n+1) div 2::nat"}}.
+Never mind the details, just focus on the pattern:
+*}
+
+lemma "\<Sum>{0..n::nat} = n*(n+1) div 2"
+proof (induction n)
+  show "\<Sum>{0..0::nat} = 0*(0+1) div 2" by simp
+next
+  fix n assume "\<Sum>{0..n::nat} = n*(n+1) div 2"
+  thus "\<Sum>{0..Suc n} = Suc n*(Suc n+1) div 2" by simp
+qed
+
+text{* Except for the rewrite steps, everything is explicitly given. This
+makes the proof easily readable, but the duplication means it is tedious to
+write and maintain. Here is how pattern
+matching can completely avoid any duplication: *}
+
+lemma "\<Sum>{0..n::nat} = n*(n+1) div 2" (is "?P n")
+proof (induction n)
+  show "?P 0" by simp
+next
+  fix n assume "?P n"
+  thus "?P(Suc n)" by simp
+qed
+
+text{* The first line introduces an abbreviation @{text"?P n"} for the goal.
+Pattern matching @{text"?P n"} with the goal instantiates @{text"?P"} to the
+function @{term"\<lambda>n. \<Sum>{0..n::nat} = n*(n+1) div 2"}.  Now the proposition to
+be proved in the base case can be written as @{text"?P 0"}, the induction
+hypothesis as @{text"?P n"}, and the conclusion of the induction step as
+@{text"?P(Suc n)"}.
+
+Induction also provides the \isacom{case} idiom that abbreviates
+the \isacom{fix}-\isacom{assume} step. The above proof becomes
+*}
+(*<*)lemma "\<Sum>{0..n::nat} = n*(n+1) div 2"(*>*)
+proof (induction n)
+  case 0
+  show ?case by simp
+next
+  case (Suc n)
+  thus ?case by simp
+qed
+
+text{*
+The unknown @{text "?case"} is set in each case to the required
+claim, i.e.\ @{text"?P 0"} and \mbox{@{text"?P(Suc n)"}} in the above proof,
+without requiring the user to define a @{text "?P"}. The general
+pattern for induction over @{typ nat} is shown on the left-hand side:
+*}text_raw{*
+\begin{tabular}{@ {}ll@ {}}
+\begin{minipage}[t]{.4\textwidth}
+\isa{%
+*}
+(*<*)lemma "P(n::nat)" proof -(*>*)
+show "P(n)"
+proof (induction n)
+  case 0
+  txt_raw{*\\\mbox{}\ \ $\vdots$\\\mbox{}\hspace{-1ex}*}
+  show ?case (*<*)sorry(*>*) txt_raw{*\ $\dots$\\*}
+next
+  case (Suc n)
+  txt_raw{*\\\mbox{}\ \ $\vdots$\\\mbox{}\hspace{-1ex}*}
+  show ?case (*<*)sorry(*>*) txt_raw{*\ $\dots$\\*}
+qed(*<*)qed(*>*)
+
+text_raw {* }
+\end{minipage}
+&
+\begin{minipage}[t]{.4\textwidth}
+~\\
+~\\
+\isacom{let} @{text"?case = \"P(0)\""}\\
+~\\
+~\\
+~\\[1ex]
+\isacom{fix} @{text n} \isacom{assume} @{text"Suc: \"P(n)\""}\\
+\isacom{let} @{text"?case = \"P(Suc n)\""}\\
+\end{minipage}
+\end{tabular}
+\medskip
+*}
+text{*
+On the right side you can see what the \isacom{case} command
+on the left stands for.
+
+In case the goal is an implication, induction does one more thing: the
+proposition to be proved in each case is not the whole implication but only
+its conclusion; the premises of the implication are immediately made
+assumptions of that case. That is, if in the above proof we replace
+\isacom{show}~@{text"P(n)"} by
+\mbox{\isacom{show}~@{text"A(n) \<Longrightarrow> P(n)"}}
+then \isacom{case}~@{text 0} stands for
+\begin{quote}
+\isacom{assume} \ @{text"0: \"A(0)\""}\\
+\isacom{let} @{text"?case = \"P(0)\""}
+\end{quote}
+and \isacom{case}~@{text"(Suc n)"} stands for
+\begin{quote}
+\isacom{fix} @{text n}\\
+\isacom{assume} @{text"Suc:"}
+  \begin{tabular}[t]{l}@{text"\"A(n) \<Longrightarrow> P(n)\""}\\@{text"\"A(Suc n)\""}\end{tabular}\\
+\isacom{let} @{text"?case = \"P(Suc n)\""}
+\end{quote}
+The list of assumptions @{text Suc} is actually subdivided
+into @{text"Suc.IH"}, the induction hypotheses (here @{text"A(n) \<Longrightarrow> P(n)"})
+and @{text"Suc.prems"}, the premises of the goal being proved
+(here @{text"A(Suc n)"}).
+
+Induction works for any datatype.
+Proving a goal @{text"\<lbrakk> A\<^isub>1(x); \<dots>; A\<^isub>k(x) \<rbrakk> \<Longrightarrow> P(x)"}
+by induction on @{text x} generates a proof obligation for each constructor
+@{text C} of the datatype. The command @{text"case (C x\<^isub>1 \<dots> x\<^isub>n)"}
+performs the following steps:
+\begin{enumerate}
+\item \isacom{fix} @{text"x\<^isub>1 \<dots> x\<^isub>n"}
+\item \isacom{assume} the induction hypotheses (calling them @{text C.IH})
+ and the premises \mbox{@{text"A\<^isub>i(C x\<^isub>1 \<dots> x\<^isub>n)"}} (calling them @{text"C.prems"})
+ and calling the whole list @{text C}
+\item \isacom{let} @{text"?case = \"P(C x\<^isub>1 \<dots> x\<^isub>n)\""}
+\end{enumerate}
+
+\subsection{Rule induction}
+
+Recall the inductive and recursive definitions of even numbers in
+\autoref{sec:inductive-defs}:
+*}
+
+inductive ev :: "nat \<Rightarrow> bool" where
+ev0: "ev 0" |
+evSS: "ev n \<Longrightarrow> ev(Suc(Suc n))"
+
+fun even :: "nat \<Rightarrow> bool" where
+"even 0 = True" |
+"even (Suc 0) = False" |
+"even (Suc(Suc n)) = even n"
+
+text{* We recast the proof of @{prop"ev n \<Longrightarrow> even n"} in Isar. The
+left column shows the actual proof text, the right column shows
+the implicit effect of the two \isacom{case} commands:*}text_raw{*
+\begin{tabular}{@ {}l@ {\qquad}l@ {}}
+\begin{minipage}[t]{.5\textwidth}
+\isa{%
+*}
+
+lemma "ev n \<Longrightarrow> even n"
+proof(induction rule: ev.induct)
+  case ev0
+  show ?case by simp
+next
+  case evSS
+
+
+
+  thus ?case by simp
+qed
+
+text_raw {* }
+\end{minipage}
+&
+\begin{minipage}[t]{.5\textwidth}
+~\\
+~\\
+\isacom{let} @{text"?case = \"even 0\""}\\
+~\\
+~\\
+\isacom{fix} @{text n}\\
+\isacom{assume} @{text"evSS:"}
+  \begin{tabular}[t]{l} @{text"\"ev n\""}\\@{text"\"even n\""}\end{tabular}\\
+\isacom{let} @{text"?case = \"even(Suc(Suc n))\""}\\
+\end{minipage}
+\end{tabular}
+\medskip
+*}
+text{*
+The proof resembles structural induction, but the induction rule is given
+explicitly and the names of the cases are the names of the rules in the
+inductive definition.
+Let us examine the two assumptions named @{thm[source]evSS}:
+@{prop "ev n"} is the premise of rule @{thm[source]evSS}, which we may assume
+because we are in the case where that rule was used; @{prop"even n"}
+is the induction hypothesis.
+\begin{warn}
+Because each \isacom{case} command introduces a list of assumptions
+named like the case name, which is the name of a rule of the inductive
+definition, those rules now need to be accessed with a qualified name, here
+@{thm[source] ev.ev0} and @{thm[source] ev.evSS}
+\end{warn}
+
+In the case @{thm[source]evSS} of the proof above we have pretended that the
+system fixes a variable @{text n}.  But unless the user provides the name
+@{text n}, the system will just invent its own name that cannot be referred
+to.  In the above proof, we do not need to refer to it, hence we do not give
+it a specific name. In case one needs to refer to it one writes
+\begin{quote}
+\isacom{case} @{text"(evSS m)"}
+\end{quote}
+just like \isacom{case}~@{text"(Suc n)"} in earlier structural inductions.
+The name @{text m} is an arbitrary choice. As a result,
+case @{thm[source] evSS} is derived from a renamed version of
+rule @{thm[source] evSS}: @{text"ev m \<Longrightarrow> ev(Suc(Suc m))"}.
+Here is an example with a (contrived) intermediate step that refers to @{text m}:
+*}
+
+lemma "ev n \<Longrightarrow> even n"
+proof(induction rule: ev.induct)
+  case ev0 show ?case by simp
+next
+  case (evSS m)
+  have "even(Suc(Suc m)) = even m" by simp
+  thus ?case using `even m` by blast
+qed
+
+text{*
+\indent
+In general, let @{text I} be a (for simplicity unary) inductively defined
+predicate and let the rules in the definition of @{text I}
+be called @{text "rule\<^isub>1"}, \dots, @{text "rule\<^isub>n"}. A proof by rule
+induction follows this pattern:
+*}
+
+(*<*)
+inductive I where rule\<^isub>1: "I()" |  rule\<^isub>2: "I()" |  rule\<^isub>n: "I()"
+lemma "I x \<Longrightarrow> P x" proof-(*>*)
+show "I x \<Longrightarrow> P x"
+proof(induction rule: I.induct)
+  case rule\<^isub>1
+  txt_raw{*\\[-.4ex]\mbox{}\ \ $\vdots$\\[-.4ex]\mbox{}\hspace{-1ex}*}
+  show ?case (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+next
+  txt_raw{*\\[-.4ex]$\vdots$\\[-.4ex]\mbox{}\hspace{-1ex}*}
+(*<*)
+  case rule\<^isub>2
+  show ?case sorry
+(*>*)
+next
+  case rule\<^isub>n
+  txt_raw{*\\[-.4ex]\mbox{}\ \ $\vdots$\\[-.4ex]\mbox{}\hspace{-1ex}*}
+  show ?case (*<*)sorry(*>*)txt_raw{*\ $\dots$\\*}
+qed(*<*)qed(*>*)
+
+text{*
+One can provide explicit variable names by writing
+\isacom{case}~@{text"(rule\<^isub>i x\<^isub>1 \<dots> x\<^isub>k)"}, thus renaming the first @{text k}
+free variables in rule @{text i} to @{text"x\<^isub>1 \<dots> x\<^isub>k"},
+going through rule @{text i} from left to right.
+
+\subsection{Assumption naming}
+
+In any induction, \isacom{case}~@{text name} sets up a list of assumptions
+also called @{text name}, which is subdivided into three parts:
+\begin{description}
+\item[@{text name.IH}] contains the induction hypotheses.
+\item[@{text name.hyps}] contains all the other hypotheses of this case in the
+induction rule. For rule inductions these are the hypotheses of rule
+@{text name}, for structural inductions these are empty.
+\item[@{text name.prems}] contains the (suitably instantiated) premises
+of the statement being proved, i.e. the @{text A\<^isub>i} when
+proving @{text"\<lbrakk> A\<^isub>1; \<dots>; A\<^isub>n \<rbrakk> \<Longrightarrow> A"}.
+\end{description}
+\begin{warn}
+Proof method @{text induct} differs from @{text induction}
+only in this naming policy: @{text induct} does not distinguish
+@{text IH} from @{text hyps} but subsumes @{text IH} under @{text hyps}.
+\end{warn}
+
+More complicated inductive proofs than the ones we have seen so far
+often need to refer to specific assumptions---just @{text name} or even
+@{text name.prems} and @{text name.IH} can be too unspecific.
+This is where the indexing of fact lists comes in handy, e.g.\
+@{text"name.IH(2)"} or @{text"name.prems(1-2)"}.
+
+\subsection{Rule inversion}
+
+Rule inversion is case analysis of which rule could have been used to
+derive some fact. The name \concept{rule inversion} emphasizes that we are
+reasoning backwards: by which rules could some given fact have been proved?
+For the inductive definition of @{const ev}, rule inversion can be summarized
+like this:
+@{prop[display]"ev n \<Longrightarrow> n = 0 \<or> (EX k. n = Suc(Suc k) \<and> ev k)"}
+The realisation in Isabelle is a case analysis.
+A simple example is the proof that @{prop"ev n \<Longrightarrow> ev (n - 2)"}. We
+already went through the details informally in \autoref{sec:Logic:even}. This
+is the Isar proof:
+*}
+(*<*)
+notepad
+begin fix n
+(*>*)
+  assume "ev n"
+  from this have "ev(n - 2)"
+  proof cases
+    case ev0 thus "ev(n - 2)" by (simp add: ev.ev0)
+  next
+    case (evSS k) thus "ev(n - 2)" by (simp add: ev.evSS)
+  qed
+(*<*)
+end
+(*>*)
+
+text{* The key point here is that a case analysis over some inductively
+defined predicate is triggered by piping the given fact
+(here: \isacom{from}~@{text this}) into a proof by @{text cases}.
+Let us examine the assumptions available in each case. In case @{text ev0}
+we have @{text"n = 0"} and in case @{text evSS} we have @{prop"n = Suc(Suc k)"}
+and @{prop"ev k"}. In each case the assumptions are available under the name
+of the case; there is no fine grained naming schema like for induction.
+
+Sometimes some rules could not have been used to derive the given fact
+because constructors clash. As an extreme example consider
+rule inversion applied to @{prop"ev(Suc 0)"}: neither rule @{text ev0} nor
+rule @{text evSS} can yield @{prop"ev(Suc 0)"} because @{text"Suc 0"} unifies
+neither with @{text 0} nor with @{term"Suc(Suc n)"}. Impossible cases do not
+have to be proved. Hence we can prove anything from @{prop"ev(Suc 0)"}:
+*}
+(*<*)
+notepad begin fix P
+(*>*)
+  assume "ev(Suc 0)" then have P by cases
+(*<*)
+end
+(*>*)
+
+text{* That is, @{prop"ev(Suc 0)"} is simply not provable: *}
+
+lemma "\<not> ev(Suc 0)"
+proof
+  assume "ev(Suc 0)" then show False by cases
+qed
+
+text{* Normally not all cases will be impossible. As a simple exercise,
+prove that \mbox{@{prop"\<not> ev(Suc(Suc(Suc 0)))"}.}
+*}
+
+(*
+lemma "\<not> ev(Suc(Suc(Suc 0)))"
+proof
+  assume "ev(Suc(Suc(Suc 0)))"
+  then show False
+  proof cases
+    case evSS
+    from `ev(Suc 0)` show False by cases
+  qed
+qed
+*)
+
+(*<*)
+end
+(*>*)