--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Doc/Tutorial/Ifexpr/Ifexpr.thy Tue Aug 28 18:57:32 2012 +0200
@@ -0,0 +1,221 @@
+(*<*)
+theory Ifexpr imports Main begin;
+(*>*)
+
+subsection{*Case Study: Boolean Expressions*}
+
+text{*\label{sec:boolex}\index{boolean expressions example|(}
+The aim of this case study is twofold: it shows how to model boolean
+expressions and some algorithms for manipulating them, and it demonstrates
+the constructs introduced above.
+*}
+
+subsubsection{*Modelling Boolean Expressions*}
+
+text{*
+We want to represent boolean expressions built up from variables and
+constants by negation and conjunction. The following datatype serves exactly
+that purpose:
+*}
+
+datatype boolex = Const bool | Var nat | Neg boolex
+ | And boolex boolex;
+
+text{*\noindent
+The two constants are represented by @{term"Const True"} and
+@{term"Const False"}. Variables are represented by terms of the form
+@{term"Var n"}, where @{term"n"} is a natural number (type @{typ"nat"}).
+For example, the formula $P@0 \land \neg P@1$ is represented by the term
+@{term"And (Var 0) (Neg(Var 1))"}.
+
+\subsubsection{The Value of a Boolean Expression}
+
+The value of a boolean expression depends on the value of its variables.
+Hence the function @{text"value"} takes an additional parameter, an
+\emph{environment} of type @{typ"nat => bool"}, which maps variables to their
+values:
+*}
+
+primrec "value" :: "boolex \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> bool" where
+"value (Const b) env = b" |
+"value (Var x) env = env x" |
+"value (Neg b) env = (\<not> value b env)" |
+"value (And b c) env = (value b env \<and> value c env)"
+
+text{*\noindent
+\subsubsection{If-Expressions}
+
+An alternative and often more efficient (because in a certain sense
+canonical) representation are so-called \emph{If-expressions} built up
+from constants (@{term"CIF"}), variables (@{term"VIF"}) and conditionals
+(@{term"IF"}):
+*}
+
+datatype ifex = CIF bool | VIF nat | IF ifex ifex ifex;
+
+text{*\noindent
+The evaluation of If-expressions proceeds as for @{typ"boolex"}:
+*}
+
+primrec valif :: "ifex \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> bool" where
+"valif (CIF b) env = b" |
+"valif (VIF x) env = env x" |
+"valif (IF b t e) env = (if valif b env then valif t env
+ else valif e env)"
+
+text{*
+\subsubsection{Converting Boolean and If-Expressions}
+
+The type @{typ"boolex"} is close to the customary representation of logical
+formulae, whereas @{typ"ifex"} is designed for efficiency. It is easy to
+translate from @{typ"boolex"} into @{typ"ifex"}:
+*}
+
+primrec bool2if :: "boolex \<Rightarrow> ifex" where
+"bool2if (Const b) = CIF b" |
+"bool2if (Var x) = VIF x" |
+"bool2if (Neg b) = IF (bool2if b) (CIF False) (CIF True)" |
+"bool2if (And b c) = IF (bool2if b) (bool2if c) (CIF False)"
+
+text{*\noindent
+At last, we have something we can verify: that @{term"bool2if"} preserves the
+value of its argument:
+*}
+
+lemma "valif (bool2if b) env = value b env";
+
+txt{*\noindent
+The proof is canonical:
+*}
+
+apply(induct_tac b);
+apply(auto);
+done
+
+text{*\noindent
+In fact, all proofs in this case study look exactly like this. Hence we do
+not show them below.
+
+More interesting is the transformation of If-expressions into a normal form
+where the first argument of @{term"IF"} cannot be another @{term"IF"} but
+must be a constant or variable. Such a normal form can be computed by
+repeatedly replacing a subterm of the form @{term"IF (IF b x y) z u"} by
+@{term"IF b (IF x z u) (IF y z u)"}, which has the same value. The following
+primitive recursive functions perform this task:
+*}
+
+primrec normif :: "ifex \<Rightarrow> ifex \<Rightarrow> ifex \<Rightarrow> ifex" where
+"normif (CIF b) t e = IF (CIF b) t e" |
+"normif (VIF x) t e = IF (VIF x) t e" |
+"normif (IF b t e) u f = normif b (normif t u f) (normif e u f)"
+
+primrec norm :: "ifex \<Rightarrow> ifex" where
+"norm (CIF b) = CIF b" |
+"norm (VIF x) = VIF x" |
+"norm (IF b t e) = normif b (norm t) (norm e)"
+
+text{*\noindent
+Their interplay is tricky; we leave it to you to develop an
+intuitive understanding. Fortunately, Isabelle can help us to verify that the
+transformation preserves the value of the expression:
+*}
+
+theorem "valif (norm b) env = valif b env";(*<*)oops;(*>*)
+
+text{*\noindent
+The proof is canonical, provided we first show the following simplification
+lemma, which also helps to understand what @{term"normif"} does:
+*}
+
+lemma [simp]:
+ "\<forall>t e. valif (normif b t e) env = valif (IF b t e) env";
+(*<*)
+apply(induct_tac b);
+by(auto);
+
+theorem "valif (norm b) env = valif b env";
+apply(induct_tac b);
+by(auto);
+(*>*)
+text{*\noindent
+Note that the lemma does not have a name, but is implicitly used in the proof
+of the theorem shown above because of the @{text"[simp]"} attribute.
+
+But how can we be sure that @{term"norm"} really produces a normal form in
+the above sense? We define a function that tests If-expressions for normality:
+*}
+
+primrec normal :: "ifex \<Rightarrow> bool" where
+"normal(CIF b) = True" |
+"normal(VIF x) = True" |
+"normal(IF b t e) = (normal t \<and> normal e \<and>
+ (case b of CIF b \<Rightarrow> True | VIF x \<Rightarrow> True | IF x y z \<Rightarrow> False))"
+
+text{*\noindent
+Now we prove @{term"normal(norm b)"}. Of course, this requires a lemma about
+normality of @{term"normif"}:
+*}
+
+lemma [simp]: "\<forall>t e. normal(normif b t e) = (normal t \<and> normal e)";
+(*<*)
+apply(induct_tac b);
+by(auto);
+
+theorem "normal(norm b)";
+apply(induct_tac b);
+by(auto);
+(*>*)
+
+text{*\medskip
+How do we come up with the required lemmas? Try to prove the main theorems
+without them and study carefully what @{text auto} leaves unproved. This
+can provide the clue. The necessity of universal quantification
+(@{text"\<forall>t e"}) in the two lemmas is explained in
+\S\ref{sec:InductionHeuristics}
+
+\begin{exercise}
+ We strengthen the definition of a @{const normal} If-expression as follows:
+ the first argument of all @{term IF}s must be a variable. Adapt the above
+ development to this changed requirement. (Hint: you may need to formulate
+ some of the goals as implications (@{text"\<longrightarrow>"}) rather than
+ equalities (@{text"="}).)
+\end{exercise}
+\index{boolean expressions example|)}
+*}
+(*<*)
+
+primrec normif2 :: "ifex => ifex => ifex => ifex" where
+"normif2 (CIF b) t e = (if b then t else e)" |
+"normif2 (VIF x) t e = IF (VIF x) t e" |
+"normif2 (IF b t e) u f = normif2 b (normif2 t u f) (normif2 e u f)"
+
+primrec norm2 :: "ifex => ifex" where
+"norm2 (CIF b) = CIF b" |
+"norm2 (VIF x) = VIF x" |
+"norm2 (IF b t e) = normif2 b (norm2 t) (norm2 e)"
+
+primrec normal2 :: "ifex => bool" where
+"normal2(CIF b) = True" |
+"normal2(VIF x) = True" |
+"normal2(IF b t e) = (normal2 t & normal2 e &
+ (case b of CIF b => False | VIF x => True | IF x y z => False))"
+
+lemma [simp]:
+ "ALL t e. valif (normif2 b t e) env = valif (IF b t e) env"
+apply(induct b)
+by(auto)
+
+theorem "valif (norm2 b) env = valif b env"
+apply(induct b)
+by(auto)
+
+lemma [simp]: "ALL t e. normal2 t & normal2 e --> normal2(normif2 b t e)"
+apply(induct b)
+by(auto)
+
+theorem "normal2(norm2 b)"
+apply(induct b)
+by(auto)
+
+end
+(*>*)