src/Doc/Tutorial/Misc/natsum.thy
changeset 48985 5386df44a037
parent 27168 9a9cc62932d9
child 67406 23307fd33906
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Doc/Tutorial/Misc/natsum.thy	Tue Aug 28 18:57:32 2012 +0200
@@ -0,0 +1,129 @@
+(*<*)
+theory natsum imports Main begin
+(*>*)
+text{*\noindent
+In particular, there are @{text"case"}-expressions, for example
+@{term[display]"case n of 0 => 0 | Suc m => m"}
+primitive recursion, for example
+*}
+
+primrec sum :: "nat \<Rightarrow> nat" where
+"sum 0 = 0" |
+"sum (Suc n) = Suc n + sum n"
+
+text{*\noindent
+and induction, for example
+*}
+
+lemma "sum n + sum n = n*(Suc n)"
+apply(induct_tac n)
+apply(auto)
+done
+
+text{*\newcommand{\mystar}{*%
+}
+\index{arithmetic operations!for \protect\isa{nat}}%
+The arithmetic operations \isadxboldpos{+}{$HOL2arithfun},
+\isadxboldpos{-}{$HOL2arithfun}, \isadxboldpos{\mystar}{$HOL2arithfun},
+\sdx{div}, \sdx{mod}, \cdx{min} and
+\cdx{max} are predefined, as are the relations
+\isadxboldpos{\isasymle}{$HOL2arithrel} and
+\isadxboldpos{<}{$HOL2arithrel}. As usual, @{prop"m-n = (0::nat)"} if
+@{prop"m<n"}. There is even a least number operation
+\sdx{LEAST}\@.  For example, @{prop"(LEAST n. 0 < n) = Suc 0"}.
+\begin{warn}\index{overloading}
+  The constants \cdx{0} and \cdx{1} and the operations
+  \isadxboldpos{+}{$HOL2arithfun}, \isadxboldpos{-}{$HOL2arithfun},
+  \isadxboldpos{\mystar}{$HOL2arithfun}, \cdx{min},
+  \cdx{max}, \isadxboldpos{\isasymle}{$HOL2arithrel} and
+  \isadxboldpos{<}{$HOL2arithrel} are overloaded: they are available
+  not just for natural numbers but for other types as well.
+  For example, given the goal @{text"x + 0 = x"}, there is nothing to indicate
+  that you are talking about natural numbers. Hence Isabelle can only infer
+  that @{term x} is of some arbitrary type where @{text 0} and @{text"+"} are
+  declared. As a consequence, you will be unable to prove the
+  goal. To alert you to such pitfalls, Isabelle flags numerals without a
+  fixed type in its output: @{prop"x+0 = x"}. (In the absence of a numeral,
+  it may take you some time to realize what has happened if \pgmenu{Show
+  Types} is not set).  In this particular example, you need to include
+  an explicit type constraint, for example @{text"x+0 = (x::nat)"}. If there
+  is enough contextual information this may not be necessary: @{prop"Suc x =
+  x"} automatically implies @{text"x::nat"} because @{term Suc} is not
+  overloaded.
+
+  For details on overloading see \S\ref{sec:overloading}.
+  Table~\ref{tab:overloading} in the appendix shows the most important
+  overloaded operations.
+\end{warn}
+\begin{warn}
+  The symbols \isadxboldpos{>}{$HOL2arithrel} and
+  \isadxboldpos{\isasymge}{$HOL2arithrel} are merely syntax: @{text"x > y"}
+  stands for @{prop"y < x"} and similary for @{text"\<ge>"} and
+  @{text"\<le>"}.
+\end{warn}
+\begin{warn}
+  Constant @{text"1::nat"} is defined to equal @{term"Suc 0"}. This definition
+  (see \S\ref{sec:ConstDefinitions}) is unfolded automatically by some
+  tactics (like @{text auto}, @{text simp} and @{text arith}) but not by
+  others (especially the single step tactics in Chapter~\ref{chap:rules}).
+  If you need the full set of numerals, see~\S\ref{sec:numerals}.
+  \emph{Novices are advised to stick to @{term"0::nat"} and @{term Suc}.}
+\end{warn}
+
+Both @{text auto} and @{text simp}
+(a method introduced below, \S\ref{sec:Simplification}) prove 
+simple arithmetic goals automatically:
+*}
+
+lemma "\<lbrakk> \<not> m < n; m < n + (1::nat) \<rbrakk> \<Longrightarrow> m = n"
+(*<*)by(auto)(*>*)
+
+text{*\noindent
+For efficiency's sake, this built-in prover ignores quantified formulae,
+many logical connectives, and all arithmetic operations apart from addition.
+In consequence, @{text auto} and @{text simp} cannot prove this slightly more complex goal:
+*}
+
+lemma "m \<noteq> (n::nat) \<Longrightarrow> m < n \<or> n < m"
+(*<*)by(arith)(*>*)
+
+text{*\noindent The method \methdx{arith} is more general.  It attempts to
+prove the first subgoal provided it is a \textbf{linear arithmetic} formula.
+Such formulas may involve the usual logical connectives (@{text"\<not>"},
+@{text"\<and>"}, @{text"\<or>"}, @{text"\<longrightarrow>"}, @{text"="},
+@{text"\<forall>"}, @{text"\<exists>"}), the relations @{text"="},
+@{text"\<le>"} and @{text"<"}, and the operations @{text"+"}, @{text"-"},
+@{term min} and @{term max}.  For example, *}
+
+lemma "min i (max j (k*k)) = max (min (k*k) i) (min i (j::nat))"
+apply(arith)
+(*<*)done(*>*)
+
+text{*\noindent
+succeeds because @{term"k*k"} can be treated as atomic. In contrast,
+*}
+
+lemma "n*n = n+1 \<Longrightarrow> n=0"
+(*<*)oops(*>*)
+
+text{*\noindent
+is not proved by @{text arith} because the proof relies 
+on properties of multiplication. Only multiplication by numerals (which is
+the same as iterated addition) is taken into account.
+
+\begin{warn} The running time of @{text arith} is exponential in the number
+  of occurrences of \ttindexboldpos{-}{$HOL2arithfun}, \cdx{min} and
+  \cdx{max} because they are first eliminated by case distinctions.
+
+If @{text k} is a numeral, \sdx{div}~@{text k}, \sdx{mod}~@{text k} and
+@{text k}~\sdx{dvd} are also supported, where the former two are eliminated
+by case distinctions, again blowing up the running time.
+
+If the formula involves quantifiers, @{text arith} may take
+super-exponential time and space.
+\end{warn}
+*}
+
+(*<*)
+end
+(*>*)