src/Doc/Tutorial/Protocol/Message.thy
changeset 48985 5386df44a037
parent 48895 4cd4ef1ef4a4
child 49322 fbb320d02420
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Doc/Tutorial/Protocol/Message.thy	Tue Aug 28 18:57:32 2012 +0200
@@ -0,0 +1,923 @@
+(*  Title:      HOL/Auth/Message
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1996  University of Cambridge
+
+Datatypes of agents and messages;
+Inductive relations "parts", "analz" and "synth"
+*)(*<*)
+
+header{*Theory of Agents and Messages for Security Protocols*}
+
+theory Message imports Main begin
+ML_file "../../antiquote_setup.ML"
+setup Antiquote_Setup.setup
+
+(*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*)
+lemma [simp] : "A \<union> (B \<union> A) = B \<union> A"
+by blast
+(*>*)
+
+section{* Agents and Messages *}
+
+text {*
+All protocol specifications refer to a syntactic theory of messages. 
+Datatype
+@{text agent} introduces the constant @{text Server} (a trusted central
+machine, needed for some protocols), an infinite population of
+friendly agents, and the~@{text Spy}:
+*}
+
+datatype agent = Server | Friend nat | Spy
+
+text {*
+Keys are just natural numbers.  Function @{text invKey} maps a public key to
+the matching private key, and vice versa:
+*}
+
+type_synonym key = nat
+consts invKey :: "key \<Rightarrow> key"
+(*<*)
+consts all_symmetric :: bool        --{*true if all keys are symmetric*}
+
+specification (invKey)
+  invKey [simp]: "invKey (invKey K) = K"
+  invKey_symmetric: "all_symmetric --> invKey = id"
+    by (rule exI [of _ id], auto)
+
+
+text{*The inverse of a symmetric key is itself; that of a public key
+      is the private key and vice versa*}
+
+definition symKeys :: "key set" where
+  "symKeys == {K. invKey K = K}"
+(*>*)
+
+text {*
+Datatype
+@{text msg} introduces the message forms, which include agent names, nonces,
+keys, compound messages, and encryptions.  
+*}
+
+datatype
+     msg = Agent  agent
+         | Nonce  nat
+         | Key    key
+         | MPair  msg msg
+         | Crypt  key msg
+
+text {*
+\noindent
+The notation $\comp{X\sb 1,\ldots X\sb{n-1},X\sb n}$
+abbreviates
+$\isa{MPair}\,X\sb 1\,\ldots\allowbreak(\isa{MPair}\,X\sb{n-1}\,X\sb n)$.
+
+Since datatype constructors are injective, we have the theorem
+@{thm [display,indent=0] msg.inject(5) [THEN iffD1, of K X K' X']}
+A ciphertext can be decrypted using only one key and
+can yield only one plaintext.  In the real world, decryption with the
+wrong key succeeds but yields garbage.  Our model of encryption is
+realistic if encryption adds some redundancy to the plaintext, such as a
+checksum, so that garbage can be detected.
+*}
+
+(*<*)
+text{*Concrete syntax: messages appear as {|A,B,NA|}, etc...*}
+syntax
+  "_MTuple"      :: "['a, args] => 'a * 'b"       ("(2{|_,/ _|})")
+
+syntax (xsymbols)
+  "_MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
+
+translations
+  "{|x, y, z|}"   == "{|x, {|y, z|}|}"
+  "{|x, y|}"      == "CONST MPair x y"
+
+
+definition keysFor :: "msg set => key set" where
+    --{*Keys useful to decrypt elements of a message set*}
+  "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
+
+
+subsubsection{*Inductive Definition of All Parts" of a Message*}
+
+inductive_set
+  parts :: "msg set => msg set"
+  for H :: "msg set"
+  where
+    Inj [intro]:               "X \<in> H ==> X \<in> parts H"
+  | Fst:         "{|X,Y|}   \<in> parts H ==> X \<in> parts H"
+  | Snd:         "{|X,Y|}   \<in> parts H ==> Y \<in> parts H"
+  | Body:        "Crypt K X \<in> parts H ==> X \<in> parts H"
+
+
+text{*Monotonicity*}
+lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)"
+apply auto
+apply (erule parts.induct) 
+apply (blast dest: parts.Fst parts.Snd parts.Body)+
+done
+
+
+text{*Equations hold because constructors are injective.*}
+lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)"
+by auto
+
+lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)"
+by auto
+
+lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)"
+by auto
+
+
+subsubsection{*Inverse of keys *}
+
+lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')"
+apply safe
+apply (drule_tac f = invKey in arg_cong, simp)
+done
+
+
+subsection{*keysFor operator*}
+
+lemma keysFor_empty [simp]: "keysFor {} = {}"
+by (unfold keysFor_def, blast)
+
+lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'"
+by (unfold keysFor_def, blast)
+
+lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))"
+by (unfold keysFor_def, blast)
+
+text{*Monotonicity*}
+lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)"
+by (unfold keysFor_def, blast)
+
+lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H"
+by (unfold keysFor_def, auto)
+
+lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H"
+by (unfold keysFor_def, auto)
+
+lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"
+by (unfold keysFor_def, auto)
+
+lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H"
+by (unfold keysFor_def, auto)
+
+lemma keysFor_insert_Crypt [simp]: 
+    "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"
+by (unfold keysFor_def, auto)
+
+lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
+by (unfold keysFor_def, auto)
+
+lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H"
+by (unfold keysFor_def, blast)
+
+
+subsection{*Inductive relation "parts"*}
+
+lemma MPair_parts:
+     "[| {|X,Y|} \<in> parts H;        
+         [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P"
+by (blast dest: parts.Fst parts.Snd) 
+
+declare MPair_parts [elim!]  parts.Body [dest!]
+text{*NB These two rules are UNSAFE in the formal sense, as they discard the
+     compound message.  They work well on THIS FILE.  
+  @{text MPair_parts} is left as SAFE because it speeds up proofs.
+  The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*}
+
+lemma parts_increasing: "H \<subseteq> parts(H)"
+by blast
+
+lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD, standard]
+
+lemma parts_empty [simp]: "parts{} = {}"
+apply safe
+apply (erule parts.induct, blast+)
+done
+
+lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
+by simp
+
+text{*WARNING: loops if H = {Y}, therefore must not be repeated!*}
+lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
+by (erule parts.induct, fast+)
+
+
+subsubsection{*Unions *}
+
+lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)"
+by (intro Un_least parts_mono Un_upper1 Un_upper2)
+
+lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)"
+apply (rule subsetI)
+apply (erule parts.induct, blast+)
+done
+
+lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)"
+by (intro equalityI parts_Un_subset1 parts_Un_subset2)
+
+lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
+apply (subst insert_is_Un [of _ H])
+apply (simp only: parts_Un)
+done
+
+text{*TWO inserts to avoid looping.  This rewrite is better than nothing.
+  Not suitable for Addsimps: its behaviour can be strange.*}
+lemma parts_insert2:
+     "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
+apply (simp add: Un_assoc)
+apply (simp add: parts_insert [symmetric])
+done
+
+lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)"
+by (intro UN_least parts_mono UN_upper)
+
+lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))"
+apply (rule subsetI)
+apply (erule parts.induct, blast+)
+done
+
+lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))"
+by (intro equalityI parts_UN_subset1 parts_UN_subset2)
+
+text{*Added to simplify arguments to parts, analz and synth.
+  NOTE: the UN versions are no longer used!*}
+
+
+text{*This allows @{text blast} to simplify occurrences of 
+  @{term "parts(G\<union>H)"} in the assumption.*}
+lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] 
+declare in_parts_UnE [elim!]
+
+
+lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)"
+by (blast intro: parts_mono [THEN [2] rev_subsetD])
+
+subsubsection{*Idempotence and transitivity *}
+
+lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H"
+by (erule parts.induct, blast+)
+
+lemma parts_idem [simp]: "parts (parts H) = parts H"
+by blast
+
+lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)"
+apply (rule iffI)
+apply (iprover intro: subset_trans parts_increasing)  
+apply (frule parts_mono, simp) 
+done
+
+lemma parts_trans: "[| X\<in> parts G;  G \<subseteq> parts H |] ==> X\<in> parts H"
+by (drule parts_mono, blast)
+
+text{*Cut*}
+lemma parts_cut:
+     "[| Y\<in> parts (insert X G);  X\<in> parts H |] ==> Y\<in> parts (G \<union> H)" 
+by (blast intro: parts_trans) 
+
+
+lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H"
+by (force dest!: parts_cut intro: parts_insertI)
+
+
+subsubsection{*Rewrite rules for pulling out atomic messages *}
+
+lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]
+
+
+lemma parts_insert_Agent [simp]:
+     "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"
+apply (rule parts_insert_eq_I) 
+apply (erule parts.induct, auto) 
+done
+
+lemma parts_insert_Nonce [simp]:
+     "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"
+apply (rule parts_insert_eq_I) 
+apply (erule parts.induct, auto) 
+done
+
+lemma parts_insert_Key [simp]:
+     "parts (insert (Key K) H) = insert (Key K) (parts H)"
+apply (rule parts_insert_eq_I) 
+apply (erule parts.induct, auto) 
+done
+
+lemma parts_insert_Crypt [simp]:
+     "parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))"
+apply (rule equalityI)
+apply (rule subsetI)
+apply (erule parts.induct, auto)
+apply (blast intro: parts.Body)
+done
+
+lemma parts_insert_MPair [simp]:
+     "parts (insert {|X,Y|} H) =  
+          insert {|X,Y|} (parts (insert X (insert Y H)))"
+apply (rule equalityI)
+apply (rule subsetI)
+apply (erule parts.induct, auto)
+apply (blast intro: parts.Fst parts.Snd)+
+done
+
+lemma parts_image_Key [simp]: "parts (Key`N) = Key`N"
+apply auto
+apply (erule parts.induct, auto)
+done
+
+
+text{*In any message, there is an upper bound N on its greatest nonce.*}
+lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
+apply (induct_tac "msg")
+apply (simp_all (no_asm_simp) add: exI parts_insert2)
+ txt{*MPair case: blast works out the necessary sum itself!*}
+ prefer 2 apply auto apply (blast elim!: add_leE)
+txt{*Nonce case*}
+apply (rule_tac x = "N + Suc nat" in exI, auto) 
+done
+(*>*)
+
+section{* Modelling the Adversary *}
+
+text {*
+The spy is part of the system and must be built into the model.  He is
+a malicious user who does not have to follow the protocol.  He
+watches the network and uses any keys he knows to decrypt messages.
+Thus he accumulates additional keys and nonces.  These he can use to
+compose new messages, which he may send to anybody.  
+
+Two functions enable us to formalize this behaviour: @{text analz} and
+@{text synth}.  Each function maps a sets of messages to another set of
+messages. The set @{text "analz H"} formalizes what the adversary can learn
+from the set of messages~$H$.  The closure properties of this set are
+defined inductively.
+*}
+
+inductive_set
+  analz :: "msg set \<Rightarrow> msg set"
+  for H :: "msg set"
+  where
+    Inj [intro,simp] : "X \<in> H \<Longrightarrow> X \<in> analz H"
+  | Fst:     "\<lbrace>X,Y\<rbrace> \<in> analz H \<Longrightarrow> X \<in> analz H"
+  | Snd:     "\<lbrace>X,Y\<rbrace> \<in> analz H \<Longrightarrow> Y \<in> analz H"
+  | Decrypt [dest]: 
+             "\<lbrakk>Crypt K X \<in> analz H; Key(invKey K) \<in> analz H\<rbrakk>
+              \<Longrightarrow> X \<in> analz H"
+(*<*)
+text{*Monotonicity; Lemma 1 of Lowe's paper*}
+lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)"
+apply auto
+apply (erule analz.induct) 
+apply (auto dest: analz.Fst analz.Snd) 
+done
+
+text{*Making it safe speeds up proofs*}
+lemma MPair_analz [elim!]:
+     "[| {|X,Y|} \<in> analz H;        
+             [| X \<in> analz H; Y \<in> analz H |] ==> P   
+          |] ==> P"
+by (blast dest: analz.Fst analz.Snd)
+
+lemma analz_increasing: "H \<subseteq> analz(H)"
+by blast
+
+lemma analz_subset_parts: "analz H \<subseteq> parts H"
+apply (rule subsetI)
+apply (erule analz.induct, blast+)
+done
+
+lemmas analz_into_parts = analz_subset_parts [THEN subsetD, standard]
+
+lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD, standard]
+
+
+lemma parts_analz [simp]: "parts (analz H) = parts H"
+apply (rule equalityI)
+apply (rule analz_subset_parts [THEN parts_mono, THEN subset_trans], simp)
+apply (blast intro: analz_increasing [THEN parts_mono, THEN subsetD])
+done
+
+lemma analz_parts [simp]: "analz (parts H) = parts H"
+apply auto
+apply (erule analz.induct, auto)
+done
+
+lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD, standard]
+
+subsubsection{*General equational properties *}
+
+lemma analz_empty [simp]: "analz{} = {}"
+apply safe
+apply (erule analz.induct, blast+)
+done
+
+text{*Converse fails: we can analz more from the union than from the 
+  separate parts, as a key in one might decrypt a message in the other*}
+lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)"
+by (intro Un_least analz_mono Un_upper1 Un_upper2)
+
+lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)"
+by (blast intro: analz_mono [THEN [2] rev_subsetD])
+
+subsubsection{*Rewrite rules for pulling out atomic messages *}
+
+lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]
+
+lemma analz_insert_Agent [simp]:
+     "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"
+apply (rule analz_insert_eq_I) 
+apply (erule analz.induct, auto) 
+done
+
+lemma analz_insert_Nonce [simp]:
+     "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"
+apply (rule analz_insert_eq_I) 
+apply (erule analz.induct, auto) 
+done
+
+text{*Can only pull out Keys if they are not needed to decrypt the rest*}
+lemma analz_insert_Key [simp]: 
+    "K \<notin> keysFor (analz H) ==>   
+          analz (insert (Key K) H) = insert (Key K) (analz H)"
+apply (unfold keysFor_def)
+apply (rule analz_insert_eq_I) 
+apply (erule analz.induct, auto) 
+done
+
+lemma analz_insert_MPair [simp]:
+     "analz (insert {|X,Y|} H) =  
+          insert {|X,Y|} (analz (insert X (insert Y H)))"
+apply (rule equalityI)
+apply (rule subsetI)
+apply (erule analz.induct, auto)
+apply (erule analz.induct)
+apply (blast intro: analz.Fst analz.Snd)+
+done
+
+text{*Can pull out enCrypted message if the Key is not known*}
+lemma analz_insert_Crypt:
+     "Key (invKey K) \<notin> analz H 
+      ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"
+apply (rule analz_insert_eq_I) 
+apply (erule analz.induct, auto) 
+
+done
+
+lemma lemma1: "Key (invKey K) \<in> analz H ==>   
+               analz (insert (Crypt K X) H) \<subseteq>  
+               insert (Crypt K X) (analz (insert X H))"
+apply (rule subsetI)
+apply (erule_tac x = x in analz.induct, auto)
+done
+
+lemma lemma2: "Key (invKey K) \<in> analz H ==>   
+               insert (Crypt K X) (analz (insert X H)) \<subseteq>  
+               analz (insert (Crypt K X) H)"
+apply auto
+apply (erule_tac x = x in analz.induct, auto)
+apply (blast intro: analz_insertI analz.Decrypt)
+done
+
+lemma analz_insert_Decrypt:
+     "Key (invKey K) \<in> analz H ==>   
+               analz (insert (Crypt K X) H) =  
+               insert (Crypt K X) (analz (insert X H))"
+by (intro equalityI lemma1 lemma2)
+
+text{*Case analysis: either the message is secure, or it is not! Effective,
+but can cause subgoals to blow up! Use with @{text "split_if"}; apparently
+@{text "split_tac"} does not cope with patterns such as @{term"analz (insert
+(Crypt K X) H)"} *} 
+lemma analz_Crypt_if [simp]:
+     "analz (insert (Crypt K X) H) =                 
+          (if (Key (invKey K) \<in> analz H)                 
+           then insert (Crypt K X) (analz (insert X H))  
+           else insert (Crypt K X) (analz H))"
+by (simp add: analz_insert_Crypt analz_insert_Decrypt)
+
+
+text{*This rule supposes "for the sake of argument" that we have the key.*}
+lemma analz_insert_Crypt_subset:
+     "analz (insert (Crypt K X) H) \<subseteq>   
+           insert (Crypt K X) (analz (insert X H))"
+apply (rule subsetI)
+apply (erule analz.induct, auto)
+done
+
+
+lemma analz_image_Key [simp]: "analz (Key`N) = Key`N"
+apply auto
+apply (erule analz.induct, auto)
+done
+
+
+subsubsection{*Idempotence and transitivity *}
+
+lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H"
+by (erule analz.induct, blast+)
+
+lemma analz_idem [simp]: "analz (analz H) = analz H"
+by blast
+
+lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)"
+apply (rule iffI)
+apply (iprover intro: subset_trans analz_increasing)  
+apply (frule analz_mono, simp) 
+done
+
+lemma analz_trans: "[| X\<in> analz G;  G \<subseteq> analz H |] ==> X\<in> analz H"
+by (drule analz_mono, blast)
+
+text{*Cut; Lemma 2 of Lowe*}
+lemma analz_cut: "[| Y\<in> analz (insert X H);  X\<in> analz H |] ==> Y\<in> analz H"
+by (erule analz_trans, blast)
+
+(*Cut can be proved easily by induction on
+   "Y: analz (insert X H) ==> X: analz H --> Y: analz H"
+*)
+
+text{*This rewrite rule helps in the simplification of messages that involve
+  the forwarding of unknown components (X).  Without it, removing occurrences
+  of X can be very complicated. *}
+lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H"
+by (blast intro: analz_cut analz_insertI)
+
+
+text{*A congruence rule for "analz" *}
+
+lemma analz_subset_cong:
+     "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] 
+      ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')"
+apply simp
+apply (iprover intro: conjI subset_trans analz_mono Un_upper1 Un_upper2) 
+done
+
+lemma analz_cong:
+     "[| analz G = analz G'; analz H = analz H' |] 
+      ==> analz (G \<union> H) = analz (G' \<union> H')"
+by (intro equalityI analz_subset_cong, simp_all) 
+
+lemma analz_insert_cong:
+     "analz H = analz H' ==> analz(insert X H) = analz(insert X H')"
+by (force simp only: insert_def intro!: analz_cong)
+
+text{*If there are no pairs or encryptions then analz does nothing*}
+lemma analz_trivial:
+     "[| \<forall>X Y. {|X,Y|} \<notin> H;  \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
+apply safe
+apply (erule analz.induct, blast+)
+done
+
+text{*These two are obsolete (with a single Spy) but cost little to prove...*}
+lemma analz_UN_analz_lemma:
+     "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)"
+apply (erule analz.induct)
+apply (blast intro: analz_mono [THEN [2] rev_subsetD])+
+done
+
+lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)"
+by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD])
+(*>*)
+text {*
+Note the @{text Decrypt} rule: the spy can decrypt a
+message encrypted with key~$K$ if he has the matching key,~$K^{-1}$. 
+Properties proved by rule induction include the following:
+@{named_thms [display,indent=0] analz_mono [no_vars] (analz_mono) analz_idem [no_vars] (analz_idem)}
+
+The set of fake messages that an intruder could invent
+starting from~@{text H} is @{text "synth(analz H)"}, where @{text "synth H"}
+formalizes what the adversary can build from the set of messages~$H$.  
+*}
+
+inductive_set
+  synth :: "msg set \<Rightarrow> msg set"
+  for H :: "msg set"
+  where
+    Inj    [intro]: "X \<in> H \<Longrightarrow> X \<in> synth H"
+  | Agent  [intro]: "Agent agt \<in> synth H"
+  | MPair  [intro]:
+              "\<lbrakk>X \<in> synth H;  Y \<in> synth H\<rbrakk> \<Longrightarrow> \<lbrace>X,Y\<rbrace> \<in> synth H"
+  | Crypt  [intro]:
+              "\<lbrakk>X \<in> synth H;  Key K \<in> H\<rbrakk> \<Longrightarrow> Crypt K X \<in> synth H"
+(*<*)
+lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)"
+  by (auto, erule synth.induct, auto)  
+
+inductive_cases Key_synth   [elim!]: "Key K \<in> synth H"
+inductive_cases MPair_synth [elim!]: "{|X,Y|} \<in> synth H"
+inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H"
+
+lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G"
+apply (rule equalityI)
+apply (rule subsetI)
+apply (erule analz.induct)
+prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD])
+apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+
+done
+
+lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H"
+apply (cut_tac H = "{}" in analz_synth_Un)
+apply (simp (no_asm_use))
+done
+(*>*)
+text {*
+The set includes all agent names.  Nonces and keys are assumed to be
+unguessable, so none are included beyond those already in~$H$.   Two
+elements of @{term "synth H"} can be combined, and an element can be encrypted
+using a key present in~$H$.
+
+Like @{text analz}, this set operator is monotone and idempotent.  It also
+satisfies an interesting equation involving @{text analz}:
+@{named_thms [display,indent=0] analz_synth [no_vars] (analz_synth)}
+Rule inversion plays a major role in reasoning about @{text synth}, through
+declarations such as this one:
+*}
+
+inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H"
+
+text {*
+\noindent
+The resulting elimination rule replaces every assumption of the form
+@{term "Nonce n \<in> synth H"} by @{term "Nonce n \<in> H"},
+expressing that a nonce cannot be guessed.  
+
+A third operator, @{text parts}, is useful for stating correctness
+properties.  The set
+@{term "parts H"} consists of the components of elements of~$H$.  This set
+includes~@{text H} and is closed under the projections from a compound
+message to its immediate parts. 
+Its definition resembles that of @{text analz} except in the rule
+corresponding to the constructor @{text Crypt}: 
+@{thm [display,indent=5] parts.Body [no_vars]}
+The body of an encrypted message is always regarded as part of it.  We can
+use @{text parts} to express general well-formedness properties of a protocol,
+for example, that an uncompromised agent's private key will never be
+included as a component of any message.
+*}
+(*<*)
+lemma synth_increasing: "H \<subseteq> synth(H)"
+by blast
+
+subsubsection{*Unions *}
+
+text{*Converse fails: we can synth more from the union than from the 
+  separate parts, building a compound message using elements of each.*}
+lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)"
+by (intro Un_least synth_mono Un_upper1 Un_upper2)
+
+lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)"
+by (blast intro: synth_mono [THEN [2] rev_subsetD])
+
+subsubsection{*Idempotence and transitivity *}
+
+lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H"
+by (erule synth.induct, blast+)
+
+lemma synth_idem: "synth (synth H) = synth H"
+by blast
+
+lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)"
+apply (rule iffI)
+apply (iprover intro: subset_trans synth_increasing)  
+apply (frule synth_mono, simp add: synth_idem) 
+done
+
+lemma synth_trans: "[| X\<in> synth G;  G \<subseteq> synth H |] ==> X\<in> synth H"
+by (drule synth_mono, blast)
+
+text{*Cut; Lemma 2 of Lowe*}
+lemma synth_cut: "[| Y\<in> synth (insert X H);  X\<in> synth H |] ==> Y\<in> synth H"
+by (erule synth_trans, blast)
+
+lemma Agent_synth [simp]: "Agent A \<in> synth H"
+by blast
+
+lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)"
+by blast
+
+lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)"
+by blast
+
+lemma Crypt_synth_eq [simp]:
+     "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)"
+by blast
+
+
+lemma keysFor_synth [simp]: 
+    "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
+by (unfold keysFor_def, blast)
+
+
+subsubsection{*Combinations of parts, analz and synth *}
+
+lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H"
+apply (rule equalityI)
+apply (rule subsetI)
+apply (erule parts.induct)
+apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD] 
+                    parts.Fst parts.Snd parts.Body)+
+done
+
+lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)"
+apply (intro equalityI analz_subset_cong)+
+apply simp_all
+done
+
+
+subsubsection{*For reasoning about the Fake rule in traces *}
+
+lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H"
+by (rule subset_trans [OF parts_mono parts_Un_subset2], blast)
+
+text{*More specifically for Fake.  Very occasionally we could do with a version
+  of the form  @{term"parts{X} \<subseteq> synth (analz H) \<union> parts H"} *}
+lemma Fake_parts_insert:
+     "X \<in> synth (analz H) ==>  
+      parts (insert X H) \<subseteq> synth (analz H) \<union> parts H"
+apply (drule parts_insert_subset_Un)
+apply (simp (no_asm_use))
+apply blast
+done
+
+lemma Fake_parts_insert_in_Un:
+     "[|Z \<in> parts (insert X H);  X: synth (analz H)|] 
+      ==> Z \<in>  synth (analz H) \<union> parts H";
+by (blast dest: Fake_parts_insert  [THEN subsetD, dest])
+
+text{*@{term H} is sometimes @{term"Key ` KK \<union> spies evs"}, so can't put 
+  @{term "G=H"}.*}
+lemma Fake_analz_insert:
+     "X\<in> synth (analz G) ==>  
+      analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"
+apply (rule subsetI)
+apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H) ")
+prefer 2 apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD])
+apply (simp (no_asm_use))
+apply blast
+done
+
+lemma analz_conj_parts [simp]:
+     "(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)"
+by (blast intro: analz_subset_parts [THEN subsetD])
+
+lemma analz_disj_parts [simp]:
+     "(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)"
+by (blast intro: analz_subset_parts [THEN subsetD])
+
+text{*Without this equation, other rules for synth and analz would yield
+  redundant cases*}
+lemma MPair_synth_analz [iff]:
+     "({|X,Y|} \<in> synth (analz H)) =  
+      (X \<in> synth (analz H) & Y \<in> synth (analz H))"
+by blast
+
+lemma Crypt_synth_analz:
+     "[| Key K \<in> analz H;  Key (invKey K) \<in> analz H |]  
+       ==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))"
+by blast
+
+
+text{*We do NOT want Crypt... messages broken up in protocols!!*}
+declare parts.Body [rule del]
+
+
+text{*Rewrites to push in Key and Crypt messages, so that other messages can
+    be pulled out using the @{text analz_insert} rules*}
+
+lemmas pushKeys [standard] =
+  insert_commute [of "Key K" "Agent C"]
+  insert_commute [of "Key K" "Nonce N"]
+  insert_commute [of "Key K" "Number N"]
+  insert_commute [of "Key K" "Hash X"]
+  insert_commute [of "Key K" "MPair X Y"]
+  insert_commute [of "Key K" "Crypt X K'"]
+
+lemmas pushCrypts [standard] =
+  insert_commute [of "Crypt X K" "Agent C"]
+  insert_commute [of "Crypt X K" "Agent C"]
+  insert_commute [of "Crypt X K" "Nonce N"]
+  insert_commute [of "Crypt X K" "Number N"]
+  insert_commute [of "Crypt X K" "Hash X'"]
+  insert_commute [of "Crypt X K" "MPair X' Y"]
+
+text{*Cannot be added with @{text "[simp]"} -- messages should not always be
+  re-ordered. *}
+lemmas pushes = pushKeys pushCrypts
+
+
+subsection{*Tactics useful for many protocol proofs*}
+ML
+{*
+val invKey = @{thm invKey};
+val keysFor_def = @{thm keysFor_def};
+val symKeys_def = @{thm symKeys_def};
+val parts_mono = @{thm parts_mono};
+val analz_mono = @{thm analz_mono};
+val synth_mono = @{thm synth_mono};
+val analz_increasing = @{thm analz_increasing};
+
+val analz_insertI = @{thm analz_insertI};
+val analz_subset_parts = @{thm analz_subset_parts};
+val Fake_parts_insert = @{thm Fake_parts_insert};
+val Fake_analz_insert = @{thm Fake_analz_insert};
+val pushes = @{thms pushes};
+
+
+(*Analysis of Fake cases.  Also works for messages that forward unknown parts,
+  but this application is no longer necessary if analz_insert_eq is used.
+  Abstraction over i is ESSENTIAL: it delays the dereferencing of claset
+  DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)
+
+(*Apply rules to break down assumptions of the form
+  Y \<in> parts(insert X H)  and  Y \<in> analz(insert X H)
+*)
+fun impOfSubs th = th RSN (2, @{thm rev_subsetD})
+
+val Fake_insert_tac = 
+    dresolve_tac [impOfSubs Fake_analz_insert,
+                  impOfSubs Fake_parts_insert] THEN'
+    eresolve_tac [asm_rl, @{thm synth.Inj}];
+
+fun Fake_insert_simp_tac ss i = 
+  REPEAT (Fake_insert_tac i) THEN asm_full_simp_tac ss i;
+
+fun atomic_spy_analz_tac ctxt =
+  SELECT_GOAL
+   (Fake_insert_simp_tac (simpset_of ctxt) 1 THEN
+    IF_UNSOLVED (Blast.depth_tac (ctxt addIs [analz_insertI, impOfSubs analz_subset_parts]) 4 1));
+
+fun spy_analz_tac ctxt i =
+  DETERM
+   (SELECT_GOAL
+     (EVERY 
+      [  (*push in occurrences of X...*)
+       (REPEAT o CHANGED)
+           (res_inst_tac ctxt [(("x", 1), "X")] (insert_commute RS ssubst) 1),
+       (*...allowing further simplifications*)
+       simp_tac (simpset_of ctxt) 1,
+       REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])),
+       DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i);
+*}
+
+text{*By default only @{text o_apply} is built-in.  But in the presence of
+eta-expansion this means that some terms displayed as @{term "f o g"} will be
+rewritten, and others will not!*}
+declare o_def [simp]
+
+
+lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A"
+by auto
+
+lemma synth_analz_mono: "G\<subseteq>H ==> synth (analz(G)) \<subseteq> synth (analz(H))"
+by (iprover intro: synth_mono analz_mono) 
+
+lemma Fake_analz_eq [simp]:
+     "X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)"
+apply (drule Fake_analz_insert[of _ _ "H"])
+apply (simp add: synth_increasing[THEN Un_absorb2])
+apply (drule synth_mono)
+apply (simp add: synth_idem)
+apply (rule equalityI)
+apply (simp add: );
+apply (rule synth_analz_mono, blast)   
+done
+
+text{*Two generalizations of @{text analz_insert_eq}*}
+lemma gen_analz_insert_eq [rule_format]:
+     "X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G";
+by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD])
+
+lemma synth_analz_insert_eq [rule_format]:
+     "X \<in> synth (analz H) 
+      ==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)";
+apply (erule synth.induct) 
+apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI]) 
+done
+
+lemma Fake_parts_sing:
+     "X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H";
+apply (rule subset_trans) 
+ apply (erule_tac [2] Fake_parts_insert)
+apply (rule parts_mono, blast)
+done
+
+lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD]
+
+method_setup spy_analz = {*
+    Scan.succeed (SIMPLE_METHOD' o spy_analz_tac) *}
+    "for proving the Fake case when analz is involved"
+
+method_setup atomic_spy_analz = {*
+    Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac) *}
+    "for debugging spy_analz"
+
+method_setup Fake_insert_simp = {*
+    Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac o simpset_of) *}
+    "for debugging spy_analz"
+
+
+end
+(*>*)
\ No newline at end of file