src/Doc/Tutorial/Rules/Primes.thy
changeset 48985 5386df44a037
parent 48611 b34ff75c23a7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Doc/Tutorial/Rules/Primes.thy	Tue Aug 28 18:57:32 2012 +0200
@@ -0,0 +1,155 @@
+(* EXTRACT from HOL/ex/Primes.thy*)
+
+(*Euclid's algorithm 
+  This material now appears AFTER that of Forward.thy *)
+theory Primes imports Main begin
+
+fun gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
+  "gcd m n = (if n=0 then m else gcd n (m mod n))"
+
+
+text {*Now in Basic.thy!
+@{thm[display]"dvd_def"}
+\rulename{dvd_def}
+*};
+
+
+(*** Euclid's Algorithm ***)
+
+lemma gcd_0 [simp]: "gcd m 0 = m"
+apply (simp);
+done
+
+lemma gcd_non_0 [simp]: "0<n \<Longrightarrow> gcd m n = gcd n (m mod n)"
+apply (simp)
+done;
+
+declare gcd.simps [simp del];
+
+(*gcd(m,n) divides m and n.  The conjunctions don't seem provable separately*)
+lemma gcd_dvd_both: "(gcd m n dvd m) \<and> (gcd m n dvd n)"
+apply (induct_tac m n rule: gcd.induct)
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (case_tac "n=0")
+txt{*subgoals after the case tac
+@{subgoals[display,indent=0,margin=65]}
+*};
+apply (simp_all) 
+  --{* @{subgoals[display,indent=0,margin=65]} *}
+by (blast dest: dvd_mod_imp_dvd)
+
+
+
+text {*
+@{thm[display] dvd_mod_imp_dvd}
+\rulename{dvd_mod_imp_dvd}
+
+@{thm[display] dvd_trans}
+\rulename{dvd_trans}
+*}
+
+lemmas gcd_dvd1 [iff] = gcd_dvd_both [THEN conjunct1]
+lemmas gcd_dvd2 [iff] = gcd_dvd_both [THEN conjunct2];
+
+
+text {*
+\begin{quote}
+@{thm[display] gcd_dvd1}
+\rulename{gcd_dvd1}
+
+@{thm[display] gcd_dvd2}
+\rulename{gcd_dvd2}
+\end{quote}
+*};
+
+(*Maximality: for all m,n,k naturals, 
+                if k divides m and k divides n then k divides gcd(m,n)*)
+lemma gcd_greatest [rule_format]:
+      "k dvd m \<longrightarrow> k dvd n \<longrightarrow> k dvd gcd m n"
+apply (induct_tac m n rule: gcd.induct)
+apply (case_tac "n=0")
+txt{*subgoals after the case tac
+@{subgoals[display,indent=0,margin=65]}
+*};
+apply (simp_all add: dvd_mod)
+done
+
+text {*
+@{thm[display] dvd_mod}
+\rulename{dvd_mod}
+*}
+
+(*just checking the claim that case_tac "n" works too*)
+lemma "k dvd m \<longrightarrow> k dvd n \<longrightarrow> k dvd gcd m n"
+apply (induct_tac m n rule: gcd.induct)
+apply (case_tac "n")
+apply (simp_all add: dvd_mod)
+done
+
+
+theorem gcd_greatest_iff [iff]: 
+        "(k dvd gcd m n) = (k dvd m \<and> k dvd n)"
+by (blast intro!: gcd_greatest intro: dvd_trans)
+
+
+(**** The material below was omitted from the book ****)
+
+definition is_gcd :: "[nat,nat,nat] \<Rightarrow> bool" where        (*gcd as a relation*)
+    "is_gcd p m n == p dvd m  \<and>  p dvd n  \<and>
+                     (ALL d. d dvd m \<and> d dvd n \<longrightarrow> d dvd p)"
+
+(*Function gcd yields the Greatest Common Divisor*)
+lemma is_gcd: "is_gcd (gcd m n) m n"
+apply (simp add: is_gcd_def gcd_greatest);
+done
+
+(*uniqueness of GCDs*)
+lemma is_gcd_unique: "\<lbrakk> is_gcd m a b; is_gcd n a b \<rbrakk> \<Longrightarrow> m=n"
+apply (simp add: is_gcd_def);
+apply (blast intro: dvd_antisym)
+done
+
+
+text {*
+@{thm[display] dvd_antisym}
+\rulename{dvd_antisym}
+
+\begin{isabelle}
+proof\ (prove):\ step\ 1\isanewline
+\isanewline
+goal\ (lemma\ is_gcd_unique):\isanewline
+\isasymlbrakk is_gcd\ m\ a\ b;\ is_gcd\ n\ a\ b\isasymrbrakk \ \isasymLongrightarrow \ m\ =\ n\isanewline
+\ 1.\ \isasymlbrakk m\ dvd\ a\ \isasymand \ m\ dvd\ b\ \isasymand \ (\isasymforall d.\ d\ dvd\ a\ \isasymand \ d\ dvd\ b\ \isasymlongrightarrow \ d\ dvd\ m);\isanewline
+\ \ \ \ \ \ \ n\ dvd\ a\ \isasymand \ n\ dvd\ b\ \isasymand \ (\isasymforall d.\ d\ dvd\ a\ \isasymand \ d\ dvd\ b\ \isasymlongrightarrow \ d\ dvd\ n)\isasymrbrakk \isanewline
+\ \ \ \ \isasymLongrightarrow \ m\ =\ n
+\end{isabelle}
+*};
+
+lemma gcd_assoc: "gcd (gcd k m) n = gcd k (gcd m n)"
+  apply (rule is_gcd_unique)
+  apply (rule is_gcd)
+  apply (simp add: is_gcd_def);
+  apply (blast intro: dvd_trans);
+  done
+
+text{*
+\begin{isabelle}
+proof\ (prove):\ step\ 3\isanewline
+\isanewline
+goal\ (lemma\ gcd_assoc):\isanewline
+gcd\ (gcd\ (k,\ m),\ n)\ =\ gcd\ (k,\ gcd\ (m,\ n))\isanewline
+\ 1.\ gcd\ (k,\ gcd\ (m,\ n))\ dvd\ k\ \isasymand \isanewline
+\ \ \ \ gcd\ (k,\ gcd\ (m,\ n))\ dvd\ m\ \isasymand \ gcd\ (k,\ gcd\ (m,\ n))\ dvd\ n
+\end{isabelle}
+*}
+
+
+lemma gcd_dvd_gcd_mult: "gcd m n dvd gcd (k*m) n"
+  apply (auto intro: dvd_trans [of _ m])
+  done
+
+(*This is half of the proof (by dvd_antisym) of*)
+lemma gcd_mult_cancel: "gcd k n = 1 \<Longrightarrow> gcd (k*m) n = gcd m n"
+  oops
+
+end