--- a/src/HOL/Finite_Set.thy Tue Jul 01 20:51:26 2025 +0200
+++ b/src/HOL/Finite_Set.thy Thu Jul 03 13:53:14 2025 +0200
@@ -2380,7 +2380,7 @@
lemma card_vimage_inj: "inj f \<Longrightarrow> A \<subseteq> range f \<Longrightarrow> card (f -` A) = card A"
by (auto 4 3 simp: subset_image_iff inj_vimage_image_eq
- intro: card_image[symmetric, OF subset_inj_on])
+ intro: card_image[symmetric, OF inj_on_subset])
lemma card_inverse[simp]: "card (R\<inverse>) = card R"
proof -
@@ -3053,7 +3053,7 @@
lemma inj_on_image_Fpow:
assumes "inj_on f A"
shows "inj_on (image f) (Fpow A)"
- using assms Fpow_subset_Pow[of A] subset_inj_on[of "image f" "Pow A"]
+ using assms Fpow_subset_Pow[of A] inj_on_subset[of "image f" "Pow A"]
inj_on_image_Pow by blast
lemma image_Fpow_mono: