--- a/src/HOL/Library/Groups_Big_Fun.thy Tue Jul 01 20:51:26 2025 +0200
+++ b/src/HOL/Library/Groups_Big_Fun.thy Thu Jul 03 13:53:14 2025 +0200
@@ -74,7 +74,7 @@
proof -
from assms have unfold: "h = g \<circ> l" by simp
from \<open>bij l\<close> have "inj l" by (rule bij_is_inj)
- then have "inj_on l {a. h a \<noteq> \<^bold>1}" by (rule subset_inj_on) simp
+ then have "inj_on l {a. h a \<noteq> \<^bold>1}" by (rule inj_on_subset) simp
moreover from \<open>bij l\<close> have "{a. g a \<noteq> \<^bold>1} = l ` {a. h a \<noteq> \<^bold>1}"
by (auto simp add: image_Collect unfold elim: bij_pointE)
moreover have "\<And>x. x \<in> {a. h a \<noteq> \<^bold>1} \<Longrightarrow> g (l x) = h x"