--- a/src/HOL/Library/Ramsey.thy Tue Jul 01 20:51:26 2025 +0200
+++ b/src/HOL/Library/Ramsey.thy Thu Jul 03 13:53:14 2025 +0200
@@ -194,7 +194,7 @@
then show "A Int (f -` X) \<in> [A]\<^bsup>k\<^esup>"
using assms
unfolding nsets_def mem_Collect_eq
- by (metis card_image finite_image_iff inf_le1 subset_inj_on)
+ by (metis card_image finite_image_iff inf_le1 inj_on_subset)
qed
lemma nsets_image_funcset:
@@ -1016,7 +1016,7 @@
from pg show "?gy ` {n. ?gt n = s'} \<subseteq> YY"
by (auto simp add: Let_def split_beta)
from infeqs' show "infinite (?gy ` {n. ?gt n = s'})"
- by (blast intro: inj_gy [THEN subset_inj_on] dest: finite_imageD)
+ by (blast intro: inj_gy [THEN inj_on_subset] dest: finite_imageD)
show "s' < s" by (rule less')
show "\<forall>X. X \<subseteq> ?gy ` {n. ?gt n = s'} \<and> finite X \<and> card X = Suc r \<longrightarrow> f X = s'"
proof -