--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Parallel_Example.thy Sun Jul 22 09:56:34 2012 +0200
@@ -0,0 +1,108 @@
+header {* A simple example demonstrating parallelism for code generated towards Isabelle/ML *}
+
+theory Parallel_Example
+imports Complex_Main "~~/src/HOL/Library/Parallel" "~~/src/HOL/Library/Debug"
+begin
+
+subsection {* Compute-intensive examples. *}
+
+subsubsection {* Fragments of the harmonic series *}
+
+definition harmonic :: "nat \<Rightarrow> rat" where
+ "harmonic n = listsum (map (\<lambda>n. 1 / of_nat n) [1..<n])"
+
+
+subsubsection {* The sieve of Erathostenes *}
+
+text {*
+ The attentive reader may relate this ad-hoc implementation to the
+ arithmetic notion of prime numbers as a little exercise.
+*}
+
+primrec mark :: "nat \<Rightarrow> nat \<Rightarrow> bool list \<Rightarrow> bool list" where
+ "mark _ _ [] = []"
+| "mark m n (p # ps) = (case n of 0 \<Rightarrow> False # mark m m ps
+ | Suc n \<Rightarrow> p # mark m n ps)"
+
+lemma length_mark [simp]:
+ "length (mark m n ps) = length ps"
+ by (induct ps arbitrary: n) (simp_all split: nat.split)
+
+function sieve :: "nat \<Rightarrow> bool list \<Rightarrow> bool list" where
+ "sieve m ps = (case dropWhile Not ps
+ of [] \<Rightarrow> ps
+ | p#ps' \<Rightarrow> let n = m - length ps' in takeWhile Not ps @ p # sieve m (mark n n ps'))"
+by pat_completeness auto
+
+termination -- {* tuning of this proof is left as an exercise to the reader *}
+ apply (relation "measure (length \<circ> snd)")
+ apply rule
+ apply (auto simp add: length_dropWhile_le)
+proof -
+ fix ps qs q
+ assume "dropWhile Not ps = q # qs"
+ then have "length (q # qs) = length (dropWhile Not ps)" by simp
+ then have "length qs < length (dropWhile Not ps)" by simp
+ moreover have "length (dropWhile Not ps) \<le> length ps"
+ by (simp add: length_dropWhile_le)
+ ultimately show "length qs < length ps" by auto
+qed
+
+primrec natify :: "nat \<Rightarrow> bool list \<Rightarrow> nat list" where
+ "natify _ [] = []"
+| "natify n (p#ps) = (if p then n # natify (Suc n) ps else natify (Suc n) ps)"
+
+primrec list_primes where
+ "list_primes (Suc n) = natify 1 (sieve n (False # replicate n True))"
+
+
+subsubsection {* Naive factorisation *}
+
+function factorise_from :: "nat \<Rightarrow> nat \<Rightarrow> nat list" where
+ "factorise_from k n = (if 1 < k \<and> k \<le> n
+ then
+ let (q, r) = divmod_nat n k
+ in if r = 0 then k # factorise_from k q
+ else factorise_from (Suc k) n
+ else [])"
+by pat_completeness auto
+
+termination factorise_from -- {* tuning of this proof is left as an exercise to the reader *}
+term measure
+apply (relation "measure (\<lambda>(k, n). 2 * n - k)")
+apply (auto simp add: prod_eq_iff)
+apply (case_tac "k \<le> 2 * q")
+apply (rule diff_less_mono)
+apply auto
+done
+
+definition factorise :: "nat \<Rightarrow> nat list" where
+ "factorise n = factorise_from 2 n"
+
+
+subsection {* Concurrent computation via futures *}
+
+definition computation_harmonic :: "unit \<Rightarrow> rat" where
+ "computation_harmonic _ = Debug.timing (STR ''harmonic example'') harmonic 300"
+
+definition computation_primes :: "unit \<Rightarrow> nat list" where
+ "computation_primes _ = Debug.timing (STR ''primes example'') list_primes 4000"
+
+definition computation_future :: "unit \<Rightarrow> nat list \<times> rat" where
+ "computation_future = Debug.timing (STR ''overall computation'')
+ (\<lambda>() \<Rightarrow> let c = Parallel.fork computation_harmonic
+ in (computation_primes (), Parallel.join c))"
+
+value [code] "computation_future ()"
+
+definition computation_factorise :: "nat \<Rightarrow> nat list" where
+ "computation_factorise = Debug.timing (STR ''factorise'') factorise"
+
+definition computation_parallel :: "unit \<Rightarrow> nat list list" where
+ "computation_parallel _ = Debug.timing (STR ''overall computation'')
+ (Parallel.map computation_factorise) [20000..<20100]"
+
+value [code] "computation_parallel ()"
+
+end
+