src/HOL/Complex_Analysis/Laurent_Convergence.thy
changeset 80948 572970d15ab0
parent 80914 d97fdabd9e2b
child 82338 1eb12389c499
--- a/src/HOL/Complex_Analysis/Laurent_Convergence.thy	Tue Sep 24 21:41:01 2024 +0200
+++ b/src/HOL/Complex_Analysis/Laurent_Convergence.thy	Thu Sep 26 14:44:37 2024 +0100
@@ -598,7 +598,7 @@
     by (rule asymp_equiv_symI, rule has_laurent_expansion_imp_asymp_equiv_0) fact
   show "(\<lambda>z. fls_nth F (fls_subdegree F) * z powi fls_subdegree F) \<midarrow>0\<rightarrow> fls_nth F 0"
     by (rule tendsto_eq_intros refl | use assms(2) in simp)+
-       (use assms(2) in \<open>auto simp: power_int_0_left_If\<close>)
+       (use assms(2) in \<open>auto simp: power_int_0_left_if\<close>)
 qed
 
 lemma has_laurent_expansion_imp_tendsto: