--- a/src/HOL/Analysis/Brouwer_Fixpoint.thy Thu Nov 28 20:38:07 2019 +0100
+++ b/src/HOL/Analysis/Brouwer_Fixpoint.thy Thu Nov 28 23:06:22 2019 +0100
@@ -717,7 +717,7 @@
then have "a = enum 0"
using \<open>a \<in> s\<close> na by (subst enum_0_bot) (auto simp: le_less intro!: less[of a _ n])
then have s_eq: "s - {a} = enum ` Suc ` {.. n}"
- using s_eq by (simp add: atMost_Suc_eq_insert_0 insert_ident zero_notin_Suc_image in_enum_image subset_eq)
+ using s_eq by (simp add: atMost_Suc_eq_insert_0 insert_ident in_enum_image subset_eq)
then have "enum 1 \<in> s - {a}"
by auto
then have "upd 0 = n"
@@ -1212,7 +1212,7 @@
have "c = t.enum (Suc l)" unfolding c_eq ..
also have "t.enum (Suc l) = b.enum (Suc i')"
using u \<open>l < k\<close> \<open>k \<le> n\<close> \<open>Suc i' < n\<close>
- by (simp_all add: enum_Suc t.enum_Suc l b.enum_Suc \<open>b.enum i' = enum i'\<close> swap_apply1)
+ by (simp_all add: enum_Suc t.enum_Suc l b.enum_Suc \<open>b.enum i' = enum i'\<close>)
(simp add: Suc_i')
also have "\<dots> = b.enum i"
using i by (simp add: i'_def)
@@ -1576,7 +1576,7 @@
proof (rule ccontr)
define n where "n = DIM('a)"
have n: "1 \<le> n" "0 < n" "n \<noteq> 0"
- unfolding n_def by (auto simp: Suc_le_eq DIM_positive)
+ unfolding n_def by (auto simp: Suc_le_eq)
assume "\<not> ?thesis"
then have *: "\<not> (\<exists>x\<in>cbox 0 One. f x - x = 0)"
by auto
@@ -1633,7 +1633,7 @@
\<bar>(f(z) - z)\<bullet>i\<bar> < d / (real n)"
proof -
have d': "d / real n / 8 > 0"
- using d(1) by (simp add: n_def DIM_positive)
+ using d(1) by (simp add: n_def)
have *: "uniformly_continuous_on (cbox 0 One) f"
by (rule compact_uniformly_continuous[OF assms(1) compact_cbox])
obtain e where e:
@@ -1732,7 +1732,7 @@
{ fix x :: "nat \<Rightarrow> nat" and i assume "\<forall>i<n. x i \<le> p" "i < n" "x i = p \<or> x i = 0"
then have "(\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<in> (cbox 0 One::'a set)"
using b'_Basis
- by (auto simp: cbox_def inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1) }
+ by (auto simp: cbox_def bij_betw_def zero_le_divide_iff divide_le_eq_1) }
note cube = this
have q2: "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow> (\<forall>i<n. x i = 0 \<longrightarrow>
(label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 0)"
@@ -1855,7 +1855,7 @@
proof (rule interiorI)
let ?I = "(\<Inter>i\<in>Basis. {x::'a. 0 < x \<bullet> i} \<inter> {x. x \<bullet> i < 1})"
show "open ?I"
- by (intro open_INT finite_Basis ballI open_Int, auto intro: open_Collect_less simp: continuous_on_inner continuous_on_const continuous_on_id)
+ by (intro open_INT finite_Basis ballI open_Int, auto intro: open_Collect_less simp: continuous_on_inner)
show "\<Sum>Basis /\<^sub>R 2 \<in> ?I"
by simp
show "?I \<subseteq> cbox 0 One"
@@ -1963,7 +1963,7 @@
case False
then show ?thesis
unfolding contractible_def nullhomotopic_from_sphere_extension
- using continuous_on_const less_eq_real_def by auto
+ using less_eq_real_def by auto
qed
corollary connected_sphere_eq:
@@ -2028,9 +2028,7 @@
have "continuous_on (closure S \<union> closure(-S)) g"
unfolding g_def
apply (rule continuous_on_cases)
- using fros fid frontier_closures
- apply (auto simp: contf continuous_on_id)
- done
+ using fros fid frontier_closures by (auto simp: contf)
moreover have "closure S \<union> closure(- S) = UNIV"
using closure_Un by fastforce
ultimately have contg: "continuous_on UNIV g" by metis