--- a/src/HOL/Analysis/Further_Topology.thy Thu Nov 28 20:38:07 2019 +0100
+++ b/src/HOL/Analysis/Further_Topology.thy Thu Nov 28 23:06:22 2019 +0100
@@ -1536,7 +1536,7 @@
then obtain y where "y \<in> rel_frontier U"
by auto
with \<open>S = {}\<close> show ?thesis
- by (rule_tac K="{}" and g="\<lambda>x. y" in that) (auto simp: continuous_on_const)
+ by (rule_tac K="{}" and g="\<lambda>x. y" in that) (auto)
qed
next
case False
@@ -1662,7 +1662,7 @@
proof (cases "r = 0")
case True
with fim show ?thesis
- by (rule_tac K="{}" and g = "\<lambda>x. a" in that) (auto simp: continuous_on_const)
+ by (rule_tac K="{}" and g = "\<lambda>x. a" in that) (auto)
next
case False
with assms have "0 < r" by auto
@@ -2836,7 +2836,7 @@
proof -
have "homotopic_loops S (f \<circ> exp \<circ> (\<lambda>t. of_real(2 * pi * t) * \<i>)) (g \<circ> exp \<circ> (\<lambda>t. of_real(2 * pi * t) * \<i>))"
apply (rule S [unfolded simply_connected_homotopic_loops, rule_format])
- apply (simp add: homotopic_circlemaps_imp_homotopic_loops homotopic_with_refl contf fim contg gim)
+ apply (simp add: homotopic_circlemaps_imp_homotopic_loops contf fim contg gim)
done
then show ?thesis
apply (rule homotopic_with_eq [OF homotopic_loops_imp_homotopic_circlemaps])
@@ -2854,8 +2854,7 @@
shows "\<exists>a. homotopic_with_canon (\<lambda>h. True) (sphere 0 1) S h (\<lambda>x. a)"
apply (rule_tac x="h 1" in exI)
apply (rule hom)
- using assms
- by (auto simp: continuous_on_const)
+ using assms by (auto)
lemma simply_connected_eq_homotopic_circlemaps2b:
fixes S :: "'a::real_normed_vector set"
@@ -2869,7 +2868,7 @@
assume "a \<in> S" "b \<in> S"
then show "homotopic_loops S (linepath a a) (linepath b b)"
using homotopic_circlemaps_imp_homotopic_loops [OF assms [of "\<lambda>x. a" "\<lambda>x. b"]]
- by (auto simp: o_def continuous_on_const linepath_def)
+ by (auto simp: o_def linepath_def)
qed
lemma simply_connected_eq_homotopic_circlemaps3:
@@ -3876,7 +3875,7 @@
apply (rule continuous_intros)
using homotopic_with_imp_continuous [OF L] apply blast
apply (rule continuous_on_subset [of "sphere 0 1", OF continuous_on_inverse])
- apply (auto simp: continuous_on_id)
+ apply (auto)
done
have "homotopic_with_canon (\<lambda>x. True) S (sphere 0 1) (\<lambda>x. f x / g x) (\<lambda>x. 1)"
using homotopic_with_sphere_times [OF L cont]
@@ -4473,7 +4472,7 @@
apply (auto simp: retract_of_def retraction_def)
apply (erule (1) Borsukian_retraction_gen)
apply (meson retraction retraction_def)
- apply (auto simp: continuous_on_id)
+ apply (auto)
done
lemma homeomorphic_Borsukian: "\<lbrakk>Borsukian S; S homeomorphic T\<rbrakk> \<Longrightarrow> Borsukian T"
@@ -5595,8 +5594,7 @@
show ?rhs
proof (cases "S = {}")
case True
- with a show ?thesis
- using continuous_on_const by force
+ with a show ?thesis by force
next
case False
have anr: "ANR (-{0::complex})"