src/HOL/ex/InductiveInvariant.thy
changeset 15636 57c437b70521
parent 14244 f58598341d30
child 16417 9bc16273c2d4
--- a/src/HOL/ex/InductiveInvariant.thy	Tue Mar 29 12:30:48 2005 +0200
+++ b/src/HOL/ex/InductiveInvariant.thy	Wed Mar 30 08:33:41 2005 +0200
@@ -1,89 +1,89 @@
-theory InductiveInvariant = Main:
-
-(** Authors: Sava Krsti\'{c} and John Matthews **)
-(**    Date: Sep 12, 2003                      **)
-
-text {* A formalization of some of the results in
-        \emph{Inductive Invariants for Nested Recursion},
-        by Sava Krsti\'{c} and John Matthews.
-        Appears in the proceedings of TPHOLs 2003, LNCS vol. 2758, pp. 253-269. *}
-
-
-text "S is an inductive invariant of the functional F with respect to the wellfounded relation r."
-
-constdefs indinv :: "('a * 'a) set => ('a => 'b => bool) => (('a => 'b) => ('a => 'b)) => bool"
-         "indinv r S F == \<forall>f x. (\<forall>y. (y,x) : r --> S y (f y)) --> S x (F f x)"
-
-
-text "S is an inductive invariant of the functional F on set D with respect to the wellfounded relation r."
-
-constdefs indinv_on :: "('a * 'a) set => 'a set => ('a => 'b => bool) => (('a => 'b) => ('a => 'b)) => bool"
-         "indinv_on r D S F == \<forall>f. \<forall>x\<in>D. (\<forall>y\<in>D. (y,x) \<in> r --> S y (f y)) --> S x (F f x)"
-
-
-text "The key theorem, corresponding to theorem 1 of the paper. All other results
-      in this theory are proved using instances of this theorem, and theorems
-      derived from this theorem."
-
-theorem indinv_wfrec:
-  assumes WF:  "wf r" and
-          INV: "indinv r S F"
-  shows        "S x (wfrec r F x)"
-proof (induct_tac x rule: wf_induct [OF WF])
-  fix x
-  assume  IHYP: "\<forall>y. (y,x) \<in> r --> S y (wfrec r F y)"
-  then have     "\<forall>y. (y,x) \<in> r --> S y (cut (wfrec r F) r x y)" by (simp add: tfl_cut_apply)
-  with INV have "S x (F (cut (wfrec r F) r x) x)" by (unfold indinv_def, blast)
-  thus "S x (wfrec r F x)" using WF by (simp add: wfrec)
-qed
-
-theorem indinv_on_wfrec:
-  assumes WF:  "wf r" and
-          INV: "indinv_on r D S F" and
-          D:   "x\<in>D"
-  shows        "S x (wfrec r F x)"
-apply (insert INV D indinv_wfrec [OF WF, of "% x y. x\<in>D --> S x y"])
-by (simp add: indinv_on_def indinv_def)
-
-theorem ind_fixpoint_on_lemma:
-  assumes WF:  "wf r" and
-         INV: "\<forall>f. \<forall>x\<in>D. (\<forall>y\<in>D. (y,x) \<in> r --> S y (wfrec r F y) & f y = wfrec r F y)
-                               --> S x (wfrec r F x) & F f x = wfrec r F x" and
-           D: "x\<in>D"
-  shows "F (wfrec r F) x = wfrec r F x & S x (wfrec r F x)"
-proof (rule indinv_on_wfrec [OF WF _ D, of "% a b. F (wfrec r F) a = b & wfrec r F a = b & S a b" F, simplified])
-  show "indinv_on r D (%a b. F (wfrec r F) a = b & wfrec r F a = b & S a b) F"
-  proof (unfold indinv_on_def, clarify)
-    fix f x
-    assume A1: "\<forall>y\<in>D. (y, x) \<in> r --> F (wfrec r F) y = f y & wfrec r F y = f y & S y (f y)"
-    assume D': "x\<in>D"
-    from A1 INV [THEN spec, of f, THEN bspec, OF D']
-      have "S x (wfrec r F x)" and
-           "F f x = wfrec r F x" by auto
-    moreover
-    from A1 have "\<forall>y\<in>D. (y, x) \<in> r --> S y (wfrec r F y)" by auto
-    with D' INV [THEN spec, of "wfrec r F", simplified]
-      have "F (wfrec r F) x = wfrec r F x" by blast
-    ultimately show "F (wfrec r F) x = F f x & wfrec r F x = F f x & S x (F f x)" by auto
-  qed
-qed
-
-theorem ind_fixpoint_lemma:
-  assumes WF:  "wf r" and
-         INV: "\<forall>f x. (\<forall>y. (y,x) \<in> r --> S y (wfrec r F y) & f y = wfrec r F y)
-                         --> S x (wfrec r F x) & F f x = wfrec r F x"
-  shows "F (wfrec r F) x = wfrec r F x & S x (wfrec r F x)"
-apply (rule ind_fixpoint_on_lemma [OF WF _ UNIV_I, simplified])
-by (rule INV)
-
-theorem tfl_indinv_wfrec:
-"[| f == wfrec r F; wf r; indinv r S F |]
- ==> S x (f x)"
-by (simp add: indinv_wfrec)
-
-theorem tfl_indinv_on_wfrec:
-"[| f == wfrec r F; wf r; indinv_on r D S F; x\<in>D |]
- ==> S x (f x)"
-by (simp add: indinv_on_wfrec)
-
+theory InductiveInvariant = Main:
+
+(** Authors: Sava Krsti\'{c} and John Matthews **)
+(**    Date: Sep 12, 2003                      **)
+
+text {* A formalization of some of the results in
+        \emph{Inductive Invariants for Nested Recursion},
+        by Sava Krsti\'{c} and John Matthews.
+        Appears in the proceedings of TPHOLs 2003, LNCS vol. 2758, pp. 253-269. *}
+
+
+text "S is an inductive invariant of the functional F with respect to the wellfounded relation r."
+
+constdefs indinv :: "('a * 'a) set => ('a => 'b => bool) => (('a => 'b) => ('a => 'b)) => bool"
+         "indinv r S F == \<forall>f x. (\<forall>y. (y,x) : r --> S y (f y)) --> S x (F f x)"
+
+
+text "S is an inductive invariant of the functional F on set D with respect to the wellfounded relation r."
+
+constdefs indinv_on :: "('a * 'a) set => 'a set => ('a => 'b => bool) => (('a => 'b) => ('a => 'b)) => bool"
+         "indinv_on r D S F == \<forall>f. \<forall>x\<in>D. (\<forall>y\<in>D. (y,x) \<in> r --> S y (f y)) --> S x (F f x)"
+
+
+text "The key theorem, corresponding to theorem 1 of the paper. All other results
+      in this theory are proved using instances of this theorem, and theorems
+      derived from this theorem."
+
+theorem indinv_wfrec:
+  assumes WF:  "wf r" and
+          INV: "indinv r S F"
+  shows        "S x (wfrec r F x)"
+proof (induct_tac x rule: wf_induct [OF WF])
+  fix x
+  assume  IHYP: "\<forall>y. (y,x) \<in> r --> S y (wfrec r F y)"
+  then have     "\<forall>y. (y,x) \<in> r --> S y (cut (wfrec r F) r x y)" by (simp add: tfl_cut_apply)
+  with INV have "S x (F (cut (wfrec r F) r x) x)" by (unfold indinv_def, blast)
+  thus "S x (wfrec r F x)" using WF by (simp add: wfrec)
+qed
+
+theorem indinv_on_wfrec:
+  assumes WF:  "wf r" and
+          INV: "indinv_on r D S F" and
+          D:   "x\<in>D"
+  shows        "S x (wfrec r F x)"
+apply (insert INV D indinv_wfrec [OF WF, of "% x y. x\<in>D --> S x y"])
+by (simp add: indinv_on_def indinv_def)
+
+theorem ind_fixpoint_on_lemma:
+  assumes WF:  "wf r" and
+         INV: "\<forall>f. \<forall>x\<in>D. (\<forall>y\<in>D. (y,x) \<in> r --> S y (wfrec r F y) & f y = wfrec r F y)
+                               --> S x (wfrec r F x) & F f x = wfrec r F x" and
+           D: "x\<in>D"
+  shows "F (wfrec r F) x = wfrec r F x & S x (wfrec r F x)"
+proof (rule indinv_on_wfrec [OF WF _ D, of "% a b. F (wfrec r F) a = b & wfrec r F a = b & S a b" F, simplified])
+  show "indinv_on r D (%a b. F (wfrec r F) a = b & wfrec r F a = b & S a b) F"
+  proof (unfold indinv_on_def, clarify)
+    fix f x
+    assume A1: "\<forall>y\<in>D. (y, x) \<in> r --> F (wfrec r F) y = f y & wfrec r F y = f y & S y (f y)"
+    assume D': "x\<in>D"
+    from A1 INV [THEN spec, of f, THEN bspec, OF D']
+      have "S x (wfrec r F x)" and
+           "F f x = wfrec r F x" by auto
+    moreover
+    from A1 have "\<forall>y\<in>D. (y, x) \<in> r --> S y (wfrec r F y)" by auto
+    with D' INV [THEN spec, of "wfrec r F", simplified]
+      have "F (wfrec r F) x = wfrec r F x" by blast
+    ultimately show "F (wfrec r F) x = F f x & wfrec r F x = F f x & S x (F f x)" by auto
+  qed
+qed
+
+theorem ind_fixpoint_lemma:
+  assumes WF:  "wf r" and
+         INV: "\<forall>f x. (\<forall>y. (y,x) \<in> r --> S y (wfrec r F y) & f y = wfrec r F y)
+                         --> S x (wfrec r F x) & F f x = wfrec r F x"
+  shows "F (wfrec r F) x = wfrec r F x & S x (wfrec r F x)"
+apply (rule ind_fixpoint_on_lemma [OF WF _ UNIV_I, simplified])
+by (rule INV)
+
+theorem tfl_indinv_wfrec:
+"[| f == wfrec r F; wf r; indinv r S F |]
+ ==> S x (f x)"
+by (simp add: indinv_wfrec)
+
+theorem tfl_indinv_on_wfrec:
+"[| f == wfrec r F; wf r; indinv_on r D S F; x\<in>D |]
+ ==> S x (f x)"
+by (simp add: indinv_on_wfrec)
+
 end
\ No newline at end of file