--- a/src/HOL/Analysis/Complex_Analysis_Basics.thy Sun Sep 23 21:49:31 2018 +0200
+++ b/src/HOL/Analysis/Complex_Analysis_Basics.thy Mon Sep 24 14:30:09 2018 +0200
@@ -16,7 +16,7 @@
lemma has_derivative_mult_right:
fixes c:: "'a :: real_normed_algebra"
- shows "((( * ) c) has_derivative (( * ) c)) F"
+ shows "(((*) c) has_derivative ((*) c)) F"
by (rule has_derivative_mult_right [OF has_derivative_ident])
lemma has_derivative_of_real[derivative_intros, simp]:
@@ -25,7 +25,7 @@
lemma has_vector_derivative_real_field:
"DERIV f (of_real a) :> f' \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a within s)"
- using has_derivative_compose[of of_real of_real a _ f "( * ) f'"]
+ using has_derivative_compose[of of_real of_real a _ f "(*) f'"]
by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def)
lemmas has_vector_derivative_real_complex = has_vector_derivative_real_field
@@ -59,10 +59,10 @@
shows "vector_derivative (\<lambda>z. cnj (f z)) (at x) = cnj (vector_derivative f (at x))"
using assms by (intro vector_derivative_cnj_within) auto
-lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = ( * ) 0"
+lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = (*) 0"
by auto
-lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = ( * ) 1"
+lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = (*) 1"
by auto
lemma uniformly_continuous_on_cmul_right [continuous_intros]:
@@ -283,7 +283,7 @@
lemma holomorphic_cong: "s = t ==> (\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on t"
by (metis holomorphic_transform)
-lemma holomorphic_on_linear [simp, holomorphic_intros]: "(( * ) c) holomorphic_on s"
+lemma holomorphic_on_linear [simp, holomorphic_intros]: "((*) c) holomorphic_on s"
unfolding holomorphic_on_def by (metis field_differentiable_linear)
lemma holomorphic_on_const [simp, holomorphic_intros]: "(\<lambda>z. c) holomorphic_on s"
@@ -572,7 +572,7 @@
finally show ?thesis .
qed
-lemma analytic_on_linear [analytic_intros,simp]: "(( * ) c) analytic_on S"
+lemma analytic_on_linear [analytic_intros,simp]: "((*) c) analytic_on S"
by (auto simp add: analytic_on_holomorphic)
lemma analytic_on_const [analytic_intros,simp]: "(\<lambda>z. c) analytic_on S"
@@ -905,9 +905,9 @@
by (intro has_field_derivative_series[of S f f' g' x0] assms A has_field_derivative_at_within)
then obtain g where g: "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>n. f n x) sums g x"
"\<And>x. x \<in> S \<Longrightarrow> (g has_field_derivative g' x) (at x within S)" by blast
- from g(2)[OF x] have g': "(g has_derivative ( * ) (g' x)) (at x)"
+ from g(2)[OF x] have g': "(g has_derivative (*) (g' x)) (at x)"
by (simp add: has_field_derivative_def S)
- have "((\<lambda>x. \<Sum>n. f n x) has_derivative ( * ) (g' x)) (at x)"
+ have "((\<lambda>x. \<Sum>n. f n x) has_derivative (*) (g' x)) (at x)"
by (rule has_derivative_transform_within_open[OF g' \<open>open S\<close> x])
(insert g, auto simp: sums_iff)
thus "(\<lambda>x. \<Sum>n. f n x) field_differentiable (at x)" unfolding differentiable_def