src/HOL/Enum.thy
changeset 69064 5840724b1d71
parent 67951 655aa11359dc
child 69275 9bbd5497befd
--- a/src/HOL/Enum.thy	Sun Sep 23 21:49:31 2018 +0200
+++ b/src/HOL/Enum.thy	Mon Sep 24 14:30:09 2018 +0200
@@ -585,7 +585,7 @@
 definition [simp]: "Groups.zero = a\<^sub>1"
 definition [simp]: "Groups.one = a\<^sub>1"
 definition [simp]: "(+) = (\<lambda>_ _. a\<^sub>1)"
-definition [simp]: "( * ) = (\<lambda>_ _. a\<^sub>1)"
+definition [simp]: "(*) = (\<lambda>_ _. a\<^sub>1)"
 definition [simp]: "(mod) = (\<lambda>_ _. a\<^sub>1)" 
 definition [simp]: "abs = (\<lambda>_. a\<^sub>1)"
 definition [simp]: "sgn = (\<lambda>_. a\<^sub>1)"
@@ -690,7 +690,7 @@
 definition "(-) = ((+) :: finite_2 \<Rightarrow> _)"
 definition "x * y = (case (x, y) of (a\<^sub>2, a\<^sub>2) \<Rightarrow> a\<^sub>2 | _ \<Rightarrow> a\<^sub>1)"
 definition "inverse = (\<lambda>x :: finite_2. x)"
-definition "divide = (( * ) :: finite_2 \<Rightarrow> _)"
+definition "divide = ((*) :: finite_2 \<Rightarrow> _)"
 definition "x mod y = (case (x, y) of (a\<^sub>2, a\<^sub>1) \<Rightarrow> a\<^sub>2 | _ \<Rightarrow> a\<^sub>1)"
 definition "abs = (\<lambda>x :: finite_2. x)"
 definition "sgn = (\<lambda>x :: finite_2. x)"