--- a/src/HOLCF/Tools/domain/domain_axioms.ML Tue Jul 21 11:13:47 2009 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,235 +0,0 @@
-(* Title: HOLCF/Tools/domain/domain_axioms.ML
- Author: David von Oheimb
-
-Syntax generator for domain command.
-*)
-
-signature DOMAIN_AXIOMS =
-sig
- val copy_of_dtyp : (int -> term) -> Datatype.dtyp -> term
-
- val calc_axioms :
- string -> Domain_Library.eq list -> int -> Domain_Library.eq ->
- string * (string * term) list * (string * term) list
-
- val add_axioms :
- bstring -> Domain_Library.eq list -> theory -> theory
-end;
-
-
-structure Domain_Axioms :> DOMAIN_AXIOMS =
-struct
-
-open Domain_Library;
-
-infixr 0 ===>;infixr 0 ==>;infix 0 == ;
-infix 1 ===; infix 1 ~= ; infix 1 <<; infix 1 ~<<;
-infix 9 ` ; infix 9 `% ; infix 9 `%%; infixr 9 oo;
-
-(* FIXME: use theory data for this *)
-val copy_tab : string Symtab.table =
- Symtab.make [(@{type_name "->"}, @{const_name "cfun_fun"}),
- (@{type_name "++"}, @{const_name "ssum_fun"}),
- (@{type_name "**"}, @{const_name "sprod_fun"}),
- (@{type_name "*"}, @{const_name "cprod_fun"}),
- (@{type_name "u"}, @{const_name "u_fun"})];
-
-fun copy_of_dtyp r dt = if DatatypeAux.is_rec_type dt then copy r dt else ID
-and copy r (DatatypeAux.DtRec i) = r i
- | copy r (DatatypeAux.DtTFree a) = ID
- | copy r (DatatypeAux.DtType (c, ds)) =
- case Symtab.lookup copy_tab c of
- SOME f => list_ccomb (%%:f, map (copy_of_dtyp r) ds)
- | NONE => (warning ("copy_of_dtyp: unknown type constructor " ^ c); ID);
-
-fun calc_axioms
- (comp_dname : string)
- (eqs : eq list)
- (n : int)
- (eqn as ((dname,_),cons) : eq)
- : string * (string * term) list * (string * term) list =
- let
-
- (* ----- axioms and definitions concerning the isomorphism ------------------ *)
-
- val dc_abs = %%:(dname^"_abs");
- val dc_rep = %%:(dname^"_rep");
- val x_name'= "x";
- val x_name = idx_name eqs x_name' (n+1);
- val dnam = Long_Name.base_name dname;
-
- val abs_iso_ax = ("abs_iso", mk_trp(dc_rep`(dc_abs`%x_name') === %:x_name'));
- val rep_iso_ax = ("rep_iso", mk_trp(dc_abs`(dc_rep`%x_name') === %:x_name'));
-
- val when_def = ("when_def",%%:(dname^"_when") ==
- List.foldr (uncurry /\ ) (/\x_name'((when_body cons (fn (x,y) =>
- Bound(1+length cons+x-y)))`(dc_rep`Bound 0))) (when_funs cons));
-
- val copy_def =
- let fun r i = cproj (Bound 0) eqs i;
- in ("copy_def", %%:(dname^"_copy") ==
- /\ "f" (dc_abs oo (copy_of_dtyp r (dtyp_of_eq eqn)) oo dc_rep)) end;
-
- (* -- definitions concerning the constructors, discriminators and selectors - *)
-
- fun con_def m n (_,args) = let
- fun idxs z x arg = (if is_lazy arg then mk_up else I) (Bound(z-x));
- fun parms vs = mk_stuple (mapn (idxs(length vs)) 1 vs);
- fun inj y 1 _ = y
- | inj y _ 0 = mk_sinl y
- | inj y i j = mk_sinr (inj y (i-1) (j-1));
- in List.foldr /\# (dc_abs`(inj (parms args) m n)) args end;
-
- val con_defs = mapn (fn n => fn (con,args) =>
- (extern_name con ^"_def", %%:con == con_def (length cons) n (con,args))) 0 cons;
-
- val dis_defs = let
- fun ddef (con,_) = (dis_name con ^"_def",%%:(dis_name con) ==
- list_ccomb(%%:(dname^"_when"),map
- (fn (con',args) => (List.foldr /\#
- (if con'=con then TT else FF) args)) cons))
- in map ddef cons end;
-
- val mat_defs =
- let
- fun mdef (con,_) =
- let
- val k = Bound 0
- val x = Bound 1
- fun one_con (con', args') =
- if con'=con then k else List.foldr /\# mk_fail args'
- val w = list_ccomb(%%:(dname^"_when"), map one_con cons)
- val rhs = /\ "x" (/\ "k" (w ` x))
- in (mat_name con ^"_def", %%:(mat_name con) == rhs) end
- in map mdef cons end;
-
- val pat_defs =
- let
- fun pdef (con,args) =
- let
- val ps = mapn (fn n => fn _ => %:("pat" ^ string_of_int n)) 1 args;
- val xs = map (bound_arg args) args;
- val r = Bound (length args);
- val rhs = case args of [] => mk_return HOLogic.unit
- | _ => mk_ctuple_pat ps ` mk_ctuple xs;
- fun one_con (con',args') = List.foldr /\# (if con'=con then rhs else mk_fail) args';
- in (pat_name con ^"_def", list_comb (%%:(pat_name con), ps) ==
- list_ccomb(%%:(dname^"_when"), map one_con cons))
- end
- in map pdef cons end;
-
- val sel_defs = let
- fun sdef con n arg = Option.map (fn sel => (sel^"_def",%%:sel ==
- list_ccomb(%%:(dname^"_when"),map
- (fn (con',args) => if con'<>con then UU else
- List.foldr /\# (Bound (length args - n)) args) cons))) (sel_of arg);
- in List.mapPartial I (List.concat(map (fn (con,args) => mapn (sdef con) 1 args) cons)) end;
-
-
- (* ----- axiom and definitions concerning induction ------------------------- *)
-
- val reach_ax = ("reach", mk_trp(cproj (mk_fix (%%:(comp_dname^"_copy"))) eqs n
- `%x_name === %:x_name));
- val take_def =
- ("take_def",
- %%:(dname^"_take") ==
- mk_lam("n",cproj
- (mk_iterate (Bound 0, %%:(comp_dname^"_copy"), UU)) eqs n));
- val finite_def =
- ("finite_def",
- %%:(dname^"_finite") ==
- mk_lam(x_name,
- mk_ex("n",(%%:(dname^"_take") $ Bound 0)`Bound 1 === Bound 1)));
-
- in (dnam,
- [abs_iso_ax, rep_iso_ax, reach_ax],
- [when_def, copy_def] @
- con_defs @ dis_defs @ mat_defs @ pat_defs @ sel_defs @
- [take_def, finite_def])
- end; (* let (calc_axioms) *)
-
-
-(* legacy type inference *)
-
-fun legacy_infer_term thy t =
- singleton (Syntax.check_terms (ProofContext.init thy)) (Sign.intern_term thy t);
-
-fun legacy_infer_prop thy t = legacy_infer_term thy (TypeInfer.constrain propT t);
-
-fun infer_props thy = map (apsnd (legacy_infer_prop thy));
-
-
-fun add_axioms_i x = snd o PureThy.add_axioms (map (Thm.no_attributes o apfst Binding.name) x);
-fun add_axioms_infer axms thy = add_axioms_i (infer_props thy axms) thy;
-
-fun add_defs_i x = snd o (PureThy.add_defs false) (map (Thm.no_attributes o apfst Binding.name) x);
-fun add_defs_infer defs thy = add_defs_i (infer_props thy defs) thy;
-
-fun add_matchers (((dname,_),cons) : eq) thy =
- let
- val con_names = map fst cons;
- val mat_names = map mat_name con_names;
- fun qualify n = Sign.full_name thy (Binding.name n);
- val ms = map qualify con_names ~~ map qualify mat_names;
- in Fixrec.add_matchers ms thy end;
-
-fun add_axioms comp_dnam (eqs : eq list) thy' =
- let
- val comp_dname = Sign.full_bname thy' comp_dnam;
- val dnames = map (fst o fst) eqs;
- val x_name = idx_name dnames "x";
- fun copy_app dname = %%:(dname^"_copy")`Bound 0;
- val copy_def = ("copy_def" , %%:(comp_dname^"_copy") ==
- /\ "f"(mk_ctuple (map copy_app dnames)));
-
- fun one_con (con,args) = let
- val nonrec_args = filter_out is_rec args;
- val rec_args = List.filter is_rec args;
- val recs_cnt = length rec_args;
- val allargs = nonrec_args @ rec_args
- @ map (upd_vname (fn s=> s^"'")) rec_args;
- val allvns = map vname allargs;
- fun vname_arg s arg = if is_rec arg then vname arg^s else vname arg;
- val vns1 = map (vname_arg "" ) args;
- val vns2 = map (vname_arg "'") args;
- val allargs_cnt = length nonrec_args + 2*recs_cnt;
- val rec_idxs = (recs_cnt-1) downto 0;
- val nonlazy_idxs = map snd (filter_out (fn (arg,_) => is_lazy arg)
- (allargs~~((allargs_cnt-1) downto 0)));
- fun rel_app i ra = proj (Bound(allargs_cnt+2)) eqs (rec_of ra) $
- Bound (2*recs_cnt-i) $ Bound (recs_cnt-i);
- val capps =
- List.foldr mk_conj
- (mk_conj(
- Bound(allargs_cnt+1)===list_ccomb(%%:con,map (bound_arg allvns) vns1),
- Bound(allargs_cnt+0)===list_ccomb(%%:con,map (bound_arg allvns) vns2)))
- (mapn rel_app 1 rec_args);
- in List.foldr mk_ex
- (Library.foldr mk_conj
- (map (defined o Bound) nonlazy_idxs,capps)) allvns
- end;
- fun one_comp n (_,cons) =
- mk_all(x_name(n+1),
- mk_all(x_name(n+1)^"'",
- mk_imp(proj (Bound 2) eqs n $ Bound 1 $ Bound 0,
- foldr1 mk_disj (mk_conj(Bound 1 === UU,Bound 0 === UU)
- ::map one_con cons))));
- val bisim_def =
- ("bisim_def",
- %%:(comp_dname^"_bisim")==mk_lam("R", foldr1 mk_conj (mapn one_comp 0 eqs)));
-
- fun add_one (thy,(dnam,axs,dfs)) =
- thy |> Sign.add_path dnam
- |> add_defs_infer dfs
- |> add_axioms_infer axs
- |> Sign.parent_path;
-
- val thy = Library.foldl add_one (thy', mapn (calc_axioms comp_dname eqs) 0 eqs);
-
- in thy |> Sign.add_path comp_dnam
- |> add_defs_infer (bisim_def::(if length eqs>1 then [copy_def] else []))
- |> Sign.parent_path
- |> fold add_matchers eqs
- end; (* let (add_axioms) *)
-
-end; (* struct *)