src/HOL/Library/ListVector.thy
changeset 81804 5a2e05eb7001
parent 81142 6ad2c917dd2e
--- a/src/HOL/Library/ListVector.thy	Mon Jan 13 21:17:40 2025 +0100
+++ b/src/HOL/Library/ListVector.thy	Tue Jan 14 18:46:58 2025 +0000
@@ -3,7 +3,7 @@
 section \<open>Lists as vectors\<close>
 
 theory ListVector
-imports Main
+  imports Main
 begin
 
 text\<open>\noindent
@@ -13,19 +13,19 @@
 text\<open>Multiplication with a scalar:\<close>
 
 abbreviation scale :: "('a::times) \<Rightarrow> 'a list \<Rightarrow> 'a list" (infix \<open>*\<^sub>s\<close> 70)
-where "x *\<^sub>s xs \<equiv> map ((*) x) xs"
+  where "x *\<^sub>s xs \<equiv> map ((*) x) xs"
 
 lemma scale1[simp]: "(1::'a::monoid_mult) *\<^sub>s xs = xs"
-by (induct xs) simp_all
+  by (induct xs) simp_all
 
 subsection \<open>\<open>+\<close> and \<open>-\<close>\<close>
 
 fun zipwith0 :: "('a::zero \<Rightarrow> 'b::zero \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list"
-where
-"zipwith0 f [] [] = []" |
-"zipwith0 f (x#xs) (y#ys) = f x y # zipwith0 f xs ys" |
-"zipwith0 f (x#xs) [] = f x 0 # zipwith0 f xs []" |
-"zipwith0 f [] (y#ys) = f 0 y # zipwith0 f [] ys"
+  where
+    "zipwith0 f [] [] = []" |
+    "zipwith0 f (x#xs) (y#ys) = f x y # zipwith0 f xs ys" |
+    "zipwith0 f (x#xs) [] = f x 0 # zipwith0 f xs []" |
+    "zipwith0 f [] (y#ys) = f 0 y # zipwith0 f [] ys"
 
 instantiation list :: ("{zero, plus}") plus
 begin
@@ -58,44 +58,44 @@
 end
 
 lemma zipwith0_Nil[simp]: "zipwith0 f [] ys = map (f 0) ys"
-by(induct ys) simp_all
+  by(induct ys) simp_all
 
 lemma list_add_Nil[simp]: "[] + xs = (xs::'a::monoid_add list)"
-by (induct xs) (auto simp:list_add_def)
+  by (induct xs) (auto simp:list_add_def)
 
 lemma list_add_Nil2[simp]: "xs + [] = (xs::'a::monoid_add list)"
-by (induct xs) (auto simp:list_add_def)
+  by (induct xs) (auto simp:list_add_def)
 
 lemma list_add_Cons[simp]: "(x#xs) + (y#ys) = (x+y)#(xs+ys)"
-by(auto simp:list_add_def)
+  by(auto simp:list_add_def)
 
 lemma list_diff_Nil[simp]: "[] - xs = -(xs::'a::group_add list)"
-by (induct xs) (auto simp:list_diff_def list_uminus_def)
+  by (induct xs) (auto simp:list_diff_def list_uminus_def)
 
 lemma list_diff_Nil2[simp]: "xs - [] = (xs::'a::group_add list)"
-by (induct xs) (auto simp:list_diff_def)
+  by (induct xs) (auto simp:list_diff_def)
 
 lemma list_diff_Cons_Cons[simp]: "(x#xs) - (y#ys) = (x-y)#(xs-ys)"
-by (induct xs) (auto simp:list_diff_def)
+  by (induct xs) (auto simp:list_diff_def)
 
 lemma list_uminus_Cons[simp]: "-(x#xs) = (-x)#(-xs)"
-by (induct xs) (auto simp:list_uminus_def)
+  by (induct xs) (auto simp:list_uminus_def)
 
 lemma self_list_diff:
   "xs - xs = replicate (length(xs::'a::group_add list)) 0"
-by(induct xs) simp_all
+  by(induct xs) simp_all
 
-lemma list_add_assoc: fixes xs :: "'a::monoid_add list"
-shows "(xs+ys)+zs = xs+(ys+zs)"
-apply(induct xs arbitrary: ys zs)
- apply simp
-apply(case_tac ys)
- apply(simp)
-apply(simp)
-apply(case_tac zs)
- apply(simp)
-apply(simp add: add.assoc)
-done
+lemma list_add_assoc: 
+  fixes xs :: "'a::monoid_add list"
+  shows "(xs+ys)+zs = xs+(ys+zs)"
+proof (induct xs arbitrary: ys zs)
+  case Nil
+  then show ?case by simp
+next
+  case (Cons a xs ys zs)
+  show ?case
+    by (cases ys; cases zs; simp add: add.assoc Cons)
+qed
 
 subsection "Inner product"
 
@@ -103,50 +103,55 @@
   where "\<langle>xs,ys\<rangle> = (\<Sum>(x,y) \<leftarrow> zip xs ys. x*y)"
 
 lemma iprod_Nil[simp]: "\<langle>[],ys\<rangle> = 0"
-by(simp add: iprod_def)
+  by(simp add: iprod_def)
 
 lemma iprod_Nil2[simp]: "\<langle>xs,[]\<rangle> = 0"
-by(simp add: iprod_def)
+  by(simp add: iprod_def)
 
 lemma iprod_Cons[simp]: "\<langle>x#xs,y#ys\<rangle> = x*y + \<langle>xs,ys\<rangle>"
-by(simp add: iprod_def)
+  by(simp add: iprod_def)
 
 lemma iprod0_if_coeffs0: "\<forall>c\<in>set cs. c = 0 \<Longrightarrow> \<langle>cs,xs\<rangle> = 0"
-apply(induct cs arbitrary:xs)
- apply simp
-apply(case_tac xs) apply simp
-apply auto
-done
+proof (induct cs arbitrary: xs)
+  case Nil
+  then show ?case by simp
+next
+  case (Cons a cs xs)
+  then show ?case
+    by (cases xs; fastforce)
+qed
 
 lemma iprod_uminus[simp]: "\<langle>-xs,ys\<rangle> = -\<langle>xs,ys\<rangle>"
-by(simp add: iprod_def uminus_sum_list_map o_def split_def map_zip_map list_uminus_def)
+  by(simp add: iprod_def uminus_sum_list_map o_def split_def map_zip_map list_uminus_def)
 
 lemma iprod_left_add_distrib: "\<langle>xs + ys,zs\<rangle> = \<langle>xs,zs\<rangle> + \<langle>ys,zs\<rangle>"
-apply(induct xs arbitrary: ys zs)
-apply (simp add: o_def split_def)
-apply(case_tac ys)
-apply simp
-apply(case_tac zs)
-apply (simp)
-apply(simp add: distrib_right)
-done
+proof (induct xs arbitrary: ys zs)
+  case Nil
+  then show ?case by simp
+next
+  case (Cons a xs ys zs)
+  show ?case
+    by (cases ys; cases zs; simp add: distrib_right Cons)
+qed
 
 lemma iprod_left_diff_distrib: "\<langle>xs - ys, zs\<rangle> = \<langle>xs,zs\<rangle> - \<langle>ys,zs\<rangle>"
-apply(induct xs arbitrary: ys zs)
-apply (simp add: o_def split_def)
-apply(case_tac ys)
-apply simp
-apply(case_tac zs)
-apply (simp)
-apply(simp add: left_diff_distrib)
-done
+proof (induct xs arbitrary: ys zs)
+  case Nil
+  then show ?case by simp
+next
+  case (Cons a xs ys zs)
+  show ?case
+    by (cases ys; cases zs; simp add: left_diff_distrib Cons)
+qed
 
 lemma iprod_assoc: "\<langle>x *\<^sub>s xs, ys\<rangle> = x * \<langle>xs,ys\<rangle>"
-apply(induct xs arbitrary: ys)
-apply simp
-apply(case_tac ys)
-apply (simp)
-apply (simp add: distrib_left mult.assoc)
-done
+proof (induct xs arbitrary: ys)
+  case Nil
+  then show ?case by simp
+next
+  case (Cons a xs ys)
+  show ?case
+    by (cases ys; simp add: distrib_left mult.assoc Cons)
+qed
 
 end