src/CTT/CTT.thy
changeset 17441 5b5feca0344a
parent 14854 61bdf2ae4dc5
child 17782 b3846df9d643
--- a/src/CTT/CTT.thy	Fri Sep 16 21:02:15 2005 +0200
+++ b/src/CTT/CTT.thy	Fri Sep 16 23:01:29 2005 +0200
@@ -1,21 +1,23 @@
-(*  Title:      CTT/ctt.thy
+(*  Title:      CTT/CTT.thy
     ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
-
-Constructive Type Theory
 *)
 
-CTT = Pure +
+header {* Constructive Type Theory *}
 
-types
-  i
-  t
-  o
+theory CTT
+imports Pure
+begin
+
+typedecl i
+typedecl t
+typedecl o
 
 consts
   (*Types*)
-  F,T       :: "t"          (*F is empty, T contains one element*)
+  F         :: "t"
+  T         :: "t"          (*F is empty, T contains one element*)
   contr     :: "i=>i"
   tt        :: "i"
   (*Natural numbers*)
@@ -23,11 +25,13 @@
   succ      :: "i=>i"
   rec       :: "[i, i, [i,i]=>i] => i"
   (*Unions*)
-  inl,inr   :: "i=>i"
+  inl       :: "i=>i"
+  inr       :: "i=>i"
   when      :: "[i, i=>i, i=>i]=>i"
   (*General Sum and Binary Product*)
   Sum       :: "[t, i=>t]=>t"
-  fst,snd   :: "i=>i"
+  fst       :: "i=>i"
+  snd       :: "i=>i"
   split     :: "[i, [i,i]=>i] =>i"
   (*General Product and Function Space*)
   Prod      :: "[t, i=>t]=>t"
@@ -64,24 +68,30 @@
   "SUM x:A. B"  => "Sum(A, %x. B)"
   "A * B"       => "Sum(A, _K(B))"
 
+print_translation {*
+  [("Prod", dependent_tr' ("@PROD", "@-->")),
+   ("Sum", dependent_tr' ("@SUM", "@*"))]
+*}
+
+
 syntax (xsymbols)
-  "@-->"    :: "[t,t]=>t"           ("(_ \\<longrightarrow>/ _)" [31,30] 30)
-  "@*"      :: "[t,t]=>t"           ("(_ \\<times>/ _)"          [51,50] 50)
-  Elem      :: "[i, t]=>prop"       ("(_ /\\<in> _)" [10,10] 5)
-  Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \\<in>/ _)" [10,10,10] 5)
-  "@SUM"    :: "[idt,t,t] => t"     ("(3\\<Sigma> _\\<in>_./ _)" 10)
-  "@PROD"   :: "[idt,t,t] => t"     ("(3\\<Pi> _\\<in>_./ _)"    10)
-  "lam "    :: "[idts, i] => i"     ("(3\\<lambda>\\<lambda>_./ _)" 10)
+  "@-->"    :: "[t,t]=>t"           ("(_ \<longrightarrow>/ _)" [31,30] 30)
+  "@*"      :: "[t,t]=>t"           ("(_ \<times>/ _)"          [51,50] 50)
+  Elem      :: "[i, t]=>prop"       ("(_ /\<in> _)" [10,10] 5)
+  Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \<in>/ _)" [10,10,10] 5)
+  "@SUM"    :: "[idt,t,t] => t"     ("(3\<Sigma> _\<in>_./ _)" 10)
+  "@PROD"   :: "[idt,t,t] => t"     ("(3\<Pi> _\<in>_./ _)"    10)
+  "lam "    :: "[idts, i] => i"     ("(3\<lambda>\<lambda>_./ _)" 10)
 
 syntax (HTML output)
-  "@*"      :: "[t,t]=>t"           ("(_ \\<times>/ _)"          [51,50] 50)
-  Elem      :: "[i, t]=>prop"       ("(_ /\\<in> _)" [10,10] 5)
-  Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \\<in>/ _)" [10,10,10] 5)
-  "@SUM"    :: "[idt,t,t] => t"     ("(3\\<Sigma> _\\<in>_./ _)" 10)
-  "@PROD"   :: "[idt,t,t] => t"     ("(3\\<Pi> _\\<in>_./ _)"    10)
-  "lam "    :: "[idts, i] => i"     ("(3\\<lambda>\\<lambda>_./ _)" 10)
+  "@*"      :: "[t,t]=>t"           ("(_ \<times>/ _)"          [51,50] 50)
+  Elem      :: "[i, t]=>prop"       ("(_ /\<in> _)" [10,10] 5)
+  Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \<in>/ _)" [10,10,10] 5)
+  "@SUM"    :: "[idt,t,t] => t"     ("(3\<Sigma> _\<in>_./ _)" 10)
+  "@PROD"   :: "[idt,t,t] => t"     ("(3\<Pi> _\<in>_./ _)"    10)
+  "lam "    :: "[idts, i] => i"     ("(3\<lambda>\<lambda>_./ _)" 10)
 
-rules
+axioms
 
   (*Reduction: a weaker notion than equality;  a hack for simplification.
     Reduce[a,b] means either that  a=b:A  for some A or else that "a" and "b"
@@ -89,167 +99,167 @@
 
   (*does not verify a:A!  Sound because only trans_red uses a Reduce premise
     No new theorems can be proved about the standard judgements.*)
-  refl_red "Reduce[a,a]"
-  red_if_equal "a = b : A ==> Reduce[a,b]"
-  trans_red "[| a = b : A;  Reduce[b,c] |] ==> a = c : A"
+  refl_red: "Reduce[a,a]"
+  red_if_equal: "a = b : A ==> Reduce[a,b]"
+  trans_red: "[| a = b : A;  Reduce[b,c] |] ==> a = c : A"
 
   (*Reflexivity*)
 
-  refl_type "A type ==> A = A"
-  refl_elem "a : A ==> a = a : A"
+  refl_type: "A type ==> A = A"
+  refl_elem: "a : A ==> a = a : A"
 
   (*Symmetry*)
 
-  sym_type  "A = B ==> B = A"
-  sym_elem  "a = b : A ==> b = a : A"
+  sym_type:  "A = B ==> B = A"
+  sym_elem:  "a = b : A ==> b = a : A"
 
   (*Transitivity*)
 
-  trans_type   "[| A = B;  B = C |] ==> A = C"
-  trans_elem   "[| a = b : A;  b = c : A |] ==> a = c : A"
+  trans_type:   "[| A = B;  B = C |] ==> A = C"
+  trans_elem:   "[| a = b : A;  b = c : A |] ==> a = c : A"
 
-  equal_types  "[| a : A;  A = B |] ==> a : B"
-  equal_typesL "[| a = b : A;  A = B |] ==> a = b : B"
+  equal_types:  "[| a : A;  A = B |] ==> a : B"
+  equal_typesL: "[| a = b : A;  A = B |] ==> a = b : B"
 
   (*Substitution*)
 
-  subst_type   "[| a : A;  !!z. z:A ==> B(z) type |] ==> B(a) type"
-  subst_typeL  "[| a = c : A;  !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)"
+  subst_type:   "[| a : A;  !!z. z:A ==> B(z) type |] ==> B(a) type"
+  subst_typeL:  "[| a = c : A;  !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)"
 
-  subst_elem   "[| a : A;  !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)"
-  subst_elemL
+  subst_elem:   "[| a : A;  !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)"
+  subst_elemL:
     "[| a=c : A;  !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)"
 
 
   (*The type N -- natural numbers*)
 
-  NF "N type"
-  NI0 "0 : N"
-  NI_succ "a : N ==> succ(a) : N"
-  NI_succL  "a = b : N ==> succ(a) = succ(b) : N"
+  NF: "N type"
+  NI0: "0 : N"
+  NI_succ: "a : N ==> succ(a) : N"
+  NI_succL:  "a = b : N ==> succ(a) = succ(b) : N"
 
-  NE
-   "[| p: N;  a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] 
+  NE:
+   "[| p: N;  a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]
    ==> rec(p, a, %u v. b(u,v)) : C(p)"
 
-  NEL
-   "[| p = q : N;  a = c : C(0);  
-      !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] 
+  NEL:
+   "[| p = q : N;  a = c : C(0);
+      !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |]
    ==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)"
 
-  NC0
-   "[| a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] 
+  NC0:
+   "[| a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]
    ==> rec(0, a, %u v. b(u,v)) = a : C(0)"
 
-  NC_succ
-   "[| p: N;  a: C(0);  
-       !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==>  
+  NC_succ:
+   "[| p: N;  a: C(0);
+       !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==>
    rec(succ(p), a, %u v. b(u,v)) = b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))"
 
   (*The fourth Peano axiom.  See page 91 of Martin-Lof's book*)
-  zero_ne_succ
+  zero_ne_succ:
     "[| a: N;  0 = succ(a) : N |] ==> 0: F"
 
 
   (*The Product of a family of types*)
 
-  ProdF  "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type"
+  ProdF:  "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type"
 
-  ProdFL
-   "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==> 
+  ProdFL:
+   "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==>
    PROD x:A. B(x) = PROD x:C. D(x)"
 
-  ProdI
+  ProdI:
    "[| A type;  !!x. x:A ==> b(x):B(x)|] ==> lam x. b(x) : PROD x:A. B(x)"
 
-  ProdIL
-   "[| A type;  !!x. x:A ==> b(x) = c(x) : B(x)|] ==> 
+  ProdIL:
+   "[| A type;  !!x. x:A ==> b(x) = c(x) : B(x)|] ==>
    lam x. b(x) = lam x. c(x) : PROD x:A. B(x)"
 
-  ProdE  "[| p : PROD x:A. B(x);  a : A |] ==> p`a : B(a)"
-  ProdEL "[| p=q: PROD x:A. B(x);  a=b : A |] ==> p`a = q`b : B(a)"
+  ProdE:  "[| p : PROD x:A. B(x);  a : A |] ==> p`a : B(a)"
+  ProdEL: "[| p=q: PROD x:A. B(x);  a=b : A |] ==> p`a = q`b : B(a)"
 
-  ProdC
-   "[| a : A;  !!x. x:A ==> b(x) : B(x)|] ==> 
+  ProdC:
+   "[| a : A;  !!x. x:A ==> b(x) : B(x)|] ==>
    (lam x. b(x)) ` a = b(a) : B(a)"
 
-  ProdC2
+  ProdC2:
    "p : PROD x:A. B(x) ==> (lam x. p`x) = p : PROD x:A. B(x)"
 
 
   (*The Sum of a family of types*)
 
-  SumF  "[| A type;  !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type"
-  SumFL
+  SumF:  "[| A type;  !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type"
+  SumFL:
     "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A. B(x) = SUM x:C. D(x)"
 
-  SumI  "[| a : A;  b : B(a) |] ==> <a,b> : SUM x:A. B(x)"
-  SumIL "[| a=c:A;  b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)"
+  SumI:  "[| a : A;  b : B(a) |] ==> <a,b> : SUM x:A. B(x)"
+  SumIL: "[| a=c:A;  b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)"
 
-  SumE
-    "[| p: SUM x:A. B(x);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] 
+  SumE:
+    "[| p: SUM x:A. B(x);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |]
     ==> split(p, %x y. c(x,y)) : C(p)"
 
-  SumEL
-    "[| p=q : SUM x:A. B(x); 
-       !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|] 
+  SumEL:
+    "[| p=q : SUM x:A. B(x);
+       !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|]
     ==> split(p, %x y. c(x,y)) = split(q, % x y. d(x,y)) : C(p)"
 
-  SumC
-    "[| a: A;  b: B(a);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] 
+  SumC:
+    "[| a: A;  b: B(a);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |]
     ==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)"
 
-  fst_def   "fst(a) == split(a, %x y. x)"
-  snd_def   "snd(a) == split(a, %x y. y)"
+  fst_def:   "fst(a) == split(a, %x y. x)"
+  snd_def:   "snd(a) == split(a, %x y. y)"
 
 
   (*The sum of two types*)
 
-  PlusF   "[| A type;  B type |] ==> A+B type"
-  PlusFL  "[| A = C;  B = D |] ==> A+B = C+D"
+  PlusF:   "[| A type;  B type |] ==> A+B type"
+  PlusFL:  "[| A = C;  B = D |] ==> A+B = C+D"
 
-  PlusI_inl   "[| a : A;  B type |] ==> inl(a) : A+B"
-  PlusI_inlL "[| a = c : A;  B type |] ==> inl(a) = inl(c) : A+B"
+  PlusI_inl:   "[| a : A;  B type |] ==> inl(a) : A+B"
+  PlusI_inlL: "[| a = c : A;  B type |] ==> inl(a) = inl(c) : A+B"
 
-  PlusI_inr   "[| A type;  b : B |] ==> inr(b) : A+B"
-  PlusI_inrL "[| A type;  b = d : B |] ==> inr(b) = inr(d) : A+B"
+  PlusI_inr:   "[| A type;  b : B |] ==> inr(b) : A+B"
+  PlusI_inrL: "[| A type;  b = d : B |] ==> inr(b) = inr(d) : A+B"
 
-  PlusE
-    "[| p: A+B;  !!x. x:A ==> c(x): C(inl(x));  
-                !!y. y:B ==> d(y): C(inr(y)) |] 
+  PlusE:
+    "[| p: A+B;  !!x. x:A ==> c(x): C(inl(x));
+                !!y. y:B ==> d(y): C(inr(y)) |]
     ==> when(p, %x. c(x), %y. d(y)) : C(p)"
 
-  PlusEL
-    "[| p = q : A+B;  !!x. x: A ==> c(x) = e(x) : C(inl(x));   
-                     !!y. y: B ==> d(y) = f(y) : C(inr(y)) |] 
+  PlusEL:
+    "[| p = q : A+B;  !!x. x: A ==> c(x) = e(x) : C(inl(x));
+                     !!y. y: B ==> d(y) = f(y) : C(inr(y)) |]
     ==> when(p, %x. c(x), %y. d(y)) = when(q, %x. e(x), %y. f(y)) : C(p)"
 
-  PlusC_inl
-    "[| a: A;  !!x. x:A ==> c(x): C(inl(x));  
-              !!y. y:B ==> d(y): C(inr(y)) |] 
+  PlusC_inl:
+    "[| a: A;  !!x. x:A ==> c(x): C(inl(x));
+              !!y. y:B ==> d(y): C(inr(y)) |]
     ==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))"
 
-  PlusC_inr
-    "[| b: B;  !!x. x:A ==> c(x): C(inl(x));  
-              !!y. y:B ==> d(y): C(inr(y)) |] 
+  PlusC_inr:
+    "[| b: B;  !!x. x:A ==> c(x): C(inl(x));
+              !!y. y:B ==> d(y): C(inr(y)) |]
     ==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))"
 
 
   (*The type Eq*)
 
-  EqF    "[| A type;  a : A;  b : A |] ==> Eq(A,a,b) type"
-  EqFL "[| A=B;  a=c: A;  b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)"
-  EqI "a = b : A ==> eq : Eq(A,a,b)"
-  EqE "p : Eq(A,a,b) ==> a = b : A"
+  EqF:    "[| A type;  a : A;  b : A |] ==> Eq(A,a,b) type"
+  EqFL: "[| A=B;  a=c: A;  b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)"
+  EqI: "a = b : A ==> eq : Eq(A,a,b)"
+  EqE: "p : Eq(A,a,b) ==> a = b : A"
 
   (*By equality of types, can prove C(p) from C(eq), an elimination rule*)
-  EqC "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)"
+  EqC: "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)"
 
   (*The type F*)
 
-  FF "F type"
-  FE "[| p: F;  C type |] ==> contr(p) : C"
-  FEL  "[| p = q : F;  C type |] ==> contr(p) = contr(q) : C"
+  FF: "F type"
+  FE: "[| p: F;  C type |] ==> contr(p) : C"
+  FEL:  "[| p = q : F;  C type |] ==> contr(p) = contr(q) : C"
 
   (*The type T
      Martin-Lof's book (page 68) discusses elimination and computation.
@@ -257,17 +267,12 @@
      but with an extra premise C(x) type x:T.
      Also computation can be derived from elimination. *)
 
-  TF "T type"
-  TI "tt : T"
-  TE "[| p : T;  c : C(tt) |] ==> c : C(p)"
-  TEL "[| p = q : T;  c = d : C(tt) |] ==> c = d : C(p)"
-  TC "p : T ==> p = tt : T"
-end
+  TF: "T type"
+  TI: "tt : T"
+  TE: "[| p : T;  c : C(tt) |] ==> c : C(p)"
+  TEL: "[| p = q : T;  c = d : C(tt) |] ==> c = d : C(p)"
+  TC: "p : T ==> p = tt : T"
 
-
-ML
+ML {* use_legacy_bindings (the_context ()) *}
 
-val print_translation =
-  [("Prod", dependent_tr' ("@PROD", "@-->")),
-   ("Sum", dependent_tr' ("@SUM", "@*"))];
-
+end