--- a/src/HOL/HoareParallel/RG_Hoare.thy Thu Sep 17 14:17:37 2009 +1000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1375 +0,0 @@
-header {* \section{The Proof System} *}
-
-theory RG_Hoare imports RG_Tran begin
-
-subsection {* Proof System for Component Programs *}
-
-declare Un_subset_iff [iff del]
-declare Cons_eq_map_conv[iff]
-
-constdefs
- stable :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"
- "stable \<equiv> \<lambda>f g. (\<forall>x y. x \<in> f \<longrightarrow> (x, y) \<in> g \<longrightarrow> y \<in> f)"
-
-inductive
- rghoare :: "['a com, 'a set, ('a \<times> 'a) set, ('a \<times> 'a) set, 'a set] \<Rightarrow> bool"
- ("\<turnstile> _ sat [_, _, _, _]" [60,0,0,0,0] 45)
-where
- Basic: "\<lbrakk> pre \<subseteq> {s. f s \<in> post}; {(s,t). s \<in> pre \<and> (t=f s \<or> t=s)} \<subseteq> guar;
- stable pre rely; stable post rely \<rbrakk>
- \<Longrightarrow> \<turnstile> Basic f sat [pre, rely, guar, post]"
-
-| Seq: "\<lbrakk> \<turnstile> P sat [pre, rely, guar, mid]; \<turnstile> Q sat [mid, rely, guar, post] \<rbrakk>
- \<Longrightarrow> \<turnstile> Seq P Q sat [pre, rely, guar, post]"
-
-| Cond: "\<lbrakk> stable pre rely; \<turnstile> P1 sat [pre \<inter> b, rely, guar, post];
- \<turnstile> P2 sat [pre \<inter> -b, rely, guar, post]; \<forall>s. (s,s)\<in>guar \<rbrakk>
- \<Longrightarrow> \<turnstile> Cond b P1 P2 sat [pre, rely, guar, post]"
-
-| While: "\<lbrakk> stable pre rely; (pre \<inter> -b) \<subseteq> post; stable post rely;
- \<turnstile> P sat [pre \<inter> b, rely, guar, pre]; \<forall>s. (s,s)\<in>guar \<rbrakk>
- \<Longrightarrow> \<turnstile> While b P sat [pre, rely, guar, post]"
-
-| Await: "\<lbrakk> stable pre rely; stable post rely;
- \<forall>V. \<turnstile> P sat [pre \<inter> b \<inter> {V}, {(s, t). s = t},
- UNIV, {s. (V, s) \<in> guar} \<inter> post] \<rbrakk>
- \<Longrightarrow> \<turnstile> Await b P sat [pre, rely, guar, post]"
-
-| Conseq: "\<lbrakk> pre \<subseteq> pre'; rely \<subseteq> rely'; guar' \<subseteq> guar; post' \<subseteq> post;
- \<turnstile> P sat [pre', rely', guar', post'] \<rbrakk>
- \<Longrightarrow> \<turnstile> P sat [pre, rely, guar, post]"
-
-constdefs
- Pre :: "'a rgformula \<Rightarrow> 'a set"
- "Pre x \<equiv> fst(snd x)"
- Post :: "'a rgformula \<Rightarrow> 'a set"
- "Post x \<equiv> snd(snd(snd(snd x)))"
- Rely :: "'a rgformula \<Rightarrow> ('a \<times> 'a) set"
- "Rely x \<equiv> fst(snd(snd x))"
- Guar :: "'a rgformula \<Rightarrow> ('a \<times> 'a) set"
- "Guar x \<equiv> fst(snd(snd(snd x)))"
- Com :: "'a rgformula \<Rightarrow> 'a com"
- "Com x \<equiv> fst x"
-
-subsection {* Proof System for Parallel Programs *}
-
-types 'a par_rgformula = "('a rgformula) list \<times> 'a set \<times> ('a \<times> 'a) set \<times> ('a \<times> 'a) set \<times> 'a set"
-
-inductive
- par_rghoare :: "('a rgformula) list \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set \<Rightarrow> bool"
- ("\<turnstile> _ SAT [_, _, _, _]" [60,0,0,0,0] 45)
-where
- Parallel:
- "\<lbrakk> \<forall>i<length xs. rely \<union> (\<Union>j\<in>{j. j<length xs \<and> j\<noteq>i}. Guar(xs!j)) \<subseteq> Rely(xs!i);
- (\<Union>j\<in>{j. j<length xs}. Guar(xs!j)) \<subseteq> guar;
- pre \<subseteq> (\<Inter>i\<in>{i. i<length xs}. Pre(xs!i));
- (\<Inter>i\<in>{i. i<length xs}. Post(xs!i)) \<subseteq> post;
- \<forall>i<length xs. \<turnstile> Com(xs!i) sat [Pre(xs!i),Rely(xs!i),Guar(xs!i),Post(xs!i)] \<rbrakk>
- \<Longrightarrow> \<turnstile> xs SAT [pre, rely, guar, post]"
-
-section {* Soundness*}
-
-subsubsection {* Some previous lemmas *}
-
-lemma tl_of_assum_in_assum:
- "(P, s) # (P, t) # xs \<in> assum (pre, rely) \<Longrightarrow> stable pre rely
- \<Longrightarrow> (P, t) # xs \<in> assum (pre, rely)"
-apply(simp add:assum_def)
-apply clarify
-apply(rule conjI)
- apply(erule_tac x=0 in allE)
- apply(simp (no_asm_use)only:stable_def)
- apply(erule allE,erule allE,erule impE,assumption,erule mp)
- apply(simp add:Env)
-apply clarify
-apply(erule_tac x="Suc i" in allE)
-apply simp
-done
-
-lemma etran_in_comm:
- "(P, t) # xs \<in> comm(guar, post) \<Longrightarrow> (P, s) # (P, t) # xs \<in> comm(guar, post)"
-apply(simp add:comm_def)
-apply clarify
-apply(case_tac i,simp+)
-done
-
-lemma ctran_in_comm:
- "\<lbrakk>(s, s) \<in> guar; (Q, s) # xs \<in> comm(guar, post)\<rbrakk>
- \<Longrightarrow> (P, s) # (Q, s) # xs \<in> comm(guar, post)"
-apply(simp add:comm_def)
-apply clarify
-apply(case_tac i,simp+)
-done
-
-lemma takecptn_is_cptn [rule_format, elim!]:
- "\<forall>j. c \<in> cptn \<longrightarrow> take (Suc j) c \<in> cptn"
-apply(induct "c")
- apply(force elim: cptn.cases)
-apply clarify
-apply(case_tac j)
- apply simp
- apply(rule CptnOne)
-apply simp
-apply(force intro:cptn.intros elim:cptn.cases)
-done
-
-lemma dropcptn_is_cptn [rule_format,elim!]:
- "\<forall>j<length c. c \<in> cptn \<longrightarrow> drop j c \<in> cptn"
-apply(induct "c")
- apply(force elim: cptn.cases)
-apply clarify
-apply(case_tac j,simp+)
-apply(erule cptn.cases)
- apply simp
- apply force
-apply force
-done
-
-lemma takepar_cptn_is_par_cptn [rule_format,elim]:
- "\<forall>j. c \<in> par_cptn \<longrightarrow> take (Suc j) c \<in> par_cptn"
-apply(induct "c")
- apply(force elim: cptn.cases)
-apply clarify
-apply(case_tac j,simp)
- apply(rule ParCptnOne)
-apply(force intro:par_cptn.intros elim:par_cptn.cases)
-done
-
-lemma droppar_cptn_is_par_cptn [rule_format]:
- "\<forall>j<length c. c \<in> par_cptn \<longrightarrow> drop j c \<in> par_cptn"
-apply(induct "c")
- apply(force elim: par_cptn.cases)
-apply clarify
-apply(case_tac j,simp+)
-apply(erule par_cptn.cases)
- apply simp
- apply force
-apply force
-done
-
-lemma tl_of_cptn_is_cptn: "\<lbrakk>x # xs \<in> cptn; xs \<noteq> []\<rbrakk> \<Longrightarrow> xs \<in> cptn"
-apply(subgoal_tac "1 < length (x # xs)")
- apply(drule dropcptn_is_cptn,simp+)
-done
-
-lemma not_ctran_None [rule_format]:
- "\<forall>s. (None, s)#xs \<in> cptn \<longrightarrow> (\<forall>i<length xs. ((None, s)#xs)!i -e\<rightarrow> xs!i)"
-apply(induct xs,simp+)
-apply clarify
-apply(erule cptn.cases,simp)
- apply simp
- apply(case_tac i,simp)
- apply(rule Env)
- apply simp
-apply(force elim:ctran.cases)
-done
-
-lemma cptn_not_empty [simp]:"[] \<notin> cptn"
-apply(force elim:cptn.cases)
-done
-
-lemma etran_or_ctran [rule_format]:
- "\<forall>m i. x\<in>cptn \<longrightarrow> m \<le> length x
- \<longrightarrow> (\<forall>i. Suc i < m \<longrightarrow> \<not> x!i -c\<rightarrow> x!Suc i) \<longrightarrow> Suc i < m
- \<longrightarrow> x!i -e\<rightarrow> x!Suc i"
-apply(induct x,simp)
-apply clarify
-apply(erule cptn.cases,simp)
- apply(case_tac i,simp)
- apply(rule Env)
- apply simp
- apply(erule_tac x="m - 1" in allE)
- apply(case_tac m,simp,simp)
- apply(subgoal_tac "(\<forall>i. Suc i < nata \<longrightarrow> (((P, t) # xs) ! i, xs ! i) \<notin> ctran)")
- apply force
- apply clarify
- apply(erule_tac x="Suc ia" in allE,simp)
-apply(erule_tac x="0" and P="\<lambda>j. ?H j \<longrightarrow> (?J j) \<notin> ctran" in allE,simp)
-done
-
-lemma etran_or_ctran2 [rule_format]:
- "\<forall>i. Suc i<length x \<longrightarrow> x\<in>cptn \<longrightarrow> (x!i -c\<rightarrow> x!Suc i \<longrightarrow> \<not> x!i -e\<rightarrow> x!Suc i)
- \<or> (x!i -e\<rightarrow> x!Suc i \<longrightarrow> \<not> x!i -c\<rightarrow> x!Suc i)"
-apply(induct x)
- apply simp
-apply clarify
-apply(erule cptn.cases,simp)
- apply(case_tac i,simp+)
-apply(case_tac i,simp)
- apply(force elim:etran.cases)
-apply simp
-done
-
-lemma etran_or_ctran2_disjI1:
- "\<lbrakk> x\<in>cptn; Suc i<length x; x!i -c\<rightarrow> x!Suc i\<rbrakk> \<Longrightarrow> \<not> x!i -e\<rightarrow> x!Suc i"
-by(drule etran_or_ctran2,simp_all)
-
-lemma etran_or_ctran2_disjI2:
- "\<lbrakk> x\<in>cptn; Suc i<length x; x!i -e\<rightarrow> x!Suc i\<rbrakk> \<Longrightarrow> \<not> x!i -c\<rightarrow> x!Suc i"
-by(drule etran_or_ctran2,simp_all)
-
-lemma not_ctran_None2 [rule_format]:
- "\<lbrakk> (None, s) # xs \<in>cptn; i<length xs\<rbrakk> \<Longrightarrow> \<not> ((None, s) # xs) ! i -c\<rightarrow> xs ! i"
-apply(frule not_ctran_None,simp)
-apply(case_tac i,simp)
- apply(force elim:etranE)
-apply simp
-apply(rule etran_or_ctran2_disjI2,simp_all)
-apply(force intro:tl_of_cptn_is_cptn)
-done
-
-lemma Ex_first_occurrence [rule_format]: "P (n::nat) \<longrightarrow> (\<exists>m. P m \<and> (\<forall>i<m. \<not> P i))";
-apply(rule nat_less_induct)
-apply clarify
-apply(case_tac "\<forall>m. m<n \<longrightarrow> \<not> P m")
-apply auto
-done
-
-lemma stability [rule_format]:
- "\<forall>j k. x \<in> cptn \<longrightarrow> stable p rely \<longrightarrow> j\<le>k \<longrightarrow> k<length x \<longrightarrow> snd(x!j)\<in>p \<longrightarrow>
- (\<forall>i. (Suc i)<length x \<longrightarrow>
- (x!i -e\<rightarrow> x!(Suc i)) \<longrightarrow> (snd(x!i), snd(x!(Suc i))) \<in> rely) \<longrightarrow>
- (\<forall>i. j\<le>i \<and> i<k \<longrightarrow> x!i -e\<rightarrow> x!Suc i) \<longrightarrow> snd(x!k)\<in>p \<and> fst(x!j)=fst(x!k)"
-apply(induct x)
- apply clarify
- apply(force elim:cptn.cases)
-apply clarify
-apply(erule cptn.cases,simp)
- apply simp
- apply(case_tac k,simp,simp)
- apply(case_tac j,simp)
- apply(erule_tac x=0 in allE)
- apply(erule_tac x="nat" and P="\<lambda>j. (0\<le>j) \<longrightarrow> (?J j)" in allE,simp)
- apply(subgoal_tac "t\<in>p")
- apply(subgoal_tac "(\<forall>i. i < length xs \<longrightarrow> ((P, t) # xs) ! i -e\<rightarrow> xs ! i \<longrightarrow> (snd (((P, t) # xs) ! i), snd (xs ! i)) \<in> rely)")
- apply clarify
- apply(erule_tac x="Suc i" and P="\<lambda>j. (?H j) \<longrightarrow> (?J j)\<in>etran" in allE,simp)
- apply clarify
- apply(erule_tac x="Suc i" and P="\<lambda>j. (?H j) \<longrightarrow> (?J j) \<longrightarrow> (?T j)\<in>rely" in allE,simp)
- apply(erule_tac x=0 and P="\<lambda>j. (?H j) \<longrightarrow> (?J j)\<in>etran \<longrightarrow> ?T j" in allE,simp)
- apply(simp(no_asm_use) only:stable_def)
- apply(erule_tac x=s in allE)
- apply(erule_tac x=t in allE)
- apply simp
- apply(erule mp)
- apply(erule mp)
- apply(rule Env)
- apply simp
- apply(erule_tac x="nata" in allE)
- apply(erule_tac x="nat" and P="\<lambda>j. (?s\<le>j) \<longrightarrow> (?J j)" in allE,simp)
- apply(subgoal_tac "(\<forall>i. i < length xs \<longrightarrow> ((P, t) # xs) ! i -e\<rightarrow> xs ! i \<longrightarrow> (snd (((P, t) # xs) ! i), snd (xs ! i)) \<in> rely)")
- apply clarify
- apply(erule_tac x="Suc i" and P="\<lambda>j. (?H j) \<longrightarrow> (?J j)\<in>etran" in allE,simp)
- apply clarify
- apply(erule_tac x="Suc i" and P="\<lambda>j. (?H j) \<longrightarrow> (?J j) \<longrightarrow> (?T j)\<in>rely" in allE,simp)
-apply(case_tac k,simp,simp)
-apply(case_tac j)
- apply(erule_tac x=0 and P="\<lambda>j. (?H j) \<longrightarrow> (?J j)\<in>etran" in allE,simp)
- apply(erule etran.cases,simp)
-apply(erule_tac x="nata" in allE)
-apply(erule_tac x="nat" and P="\<lambda>j. (?s\<le>j) \<longrightarrow> (?J j)" in allE,simp)
-apply(subgoal_tac "(\<forall>i. i < length xs \<longrightarrow> ((Q, t) # xs) ! i -e\<rightarrow> xs ! i \<longrightarrow> (snd (((Q, t) # xs) ! i), snd (xs ! i)) \<in> rely)")
- apply clarify
- apply(erule_tac x="Suc i" and P="\<lambda>j. (?H j) \<longrightarrow> (?J j)\<in>etran" in allE,simp)
-apply clarify
-apply(erule_tac x="Suc i" and P="\<lambda>j. (?H j) \<longrightarrow> (?J j) \<longrightarrow> (?T j)\<in>rely" in allE,simp)
-done
-
-subsection {* Soundness of the System for Component Programs *}
-
-subsubsection {* Soundness of the Basic rule *}
-
-lemma unique_ctran_Basic [rule_format]:
- "\<forall>s i. x \<in> cptn \<longrightarrow> x ! 0 = (Some (Basic f), s) \<longrightarrow>
- Suc i<length x \<longrightarrow> x!i -c\<rightarrow> x!Suc i \<longrightarrow>
- (\<forall>j. Suc j<length x \<longrightarrow> i\<noteq>j \<longrightarrow> x!j -e\<rightarrow> x!Suc j)"
-apply(induct x,simp)
-apply simp
-apply clarify
-apply(erule cptn.cases,simp)
- apply(case_tac i,simp+)
- apply clarify
- apply(case_tac j,simp)
- apply(rule Env)
- apply simp
-apply clarify
-apply simp
-apply(case_tac i)
- apply(case_tac j,simp,simp)
- apply(erule ctran.cases,simp_all)
- apply(force elim: not_ctran_None)
-apply(ind_cases "((Some (Basic f), sa), Q, t) \<in> ctran" for sa Q t)
-apply simp
-apply(drule_tac i=nat in not_ctran_None,simp)
-apply(erule etranE,simp)
-done
-
-lemma exists_ctran_Basic_None [rule_format]:
- "\<forall>s i. x \<in> cptn \<longrightarrow> x ! 0 = (Some (Basic f), s)
- \<longrightarrow> i<length x \<longrightarrow> fst(x!i)=None \<longrightarrow> (\<exists>j<i. x!j -c\<rightarrow> x!Suc j)"
-apply(induct x,simp)
-apply simp
-apply clarify
-apply(erule cptn.cases,simp)
- apply(case_tac i,simp,simp)
- apply(erule_tac x=nat in allE,simp)
- apply clarify
- apply(rule_tac x="Suc j" in exI,simp,simp)
-apply clarify
-apply(case_tac i,simp,simp)
-apply(rule_tac x=0 in exI,simp)
-done
-
-lemma Basic_sound:
- " \<lbrakk>pre \<subseteq> {s. f s \<in> post}; {(s, t). s \<in> pre \<and> t = f s} \<subseteq> guar;
- stable pre rely; stable post rely\<rbrakk>
- \<Longrightarrow> \<Turnstile> Basic f sat [pre, rely, guar, post]"
-apply(unfold com_validity_def)
-apply clarify
-apply(simp add:comm_def)
-apply(rule conjI)
- apply clarify
- apply(simp add:cp_def assum_def)
- apply clarify
- apply(frule_tac j=0 and k=i and p=pre in stability)
- apply simp_all
- apply(erule_tac x=ia in allE,simp)
- apply(erule_tac i=i and f=f in unique_ctran_Basic,simp_all)
- apply(erule subsetD,simp)
- apply(case_tac "x!i")
- apply clarify
- apply(drule_tac s="Some (Basic f)" in sym,simp)
- apply(thin_tac "\<forall>j. ?H j")
- apply(force elim:ctran.cases)
-apply clarify
-apply(simp add:cp_def)
-apply clarify
-apply(frule_tac i="length x - 1" and f=f in exists_ctran_Basic_None,simp+)
- apply(case_tac x,simp+)
- apply(rule last_fst_esp,simp add:last_length)
- apply (case_tac x,simp+)
-apply(simp add:assum_def)
-apply clarify
-apply(frule_tac j=0 and k="j" and p=pre in stability)
- apply simp_all
- apply(erule_tac x=i in allE,simp)
- apply(erule_tac i=j and f=f in unique_ctran_Basic,simp_all)
-apply(case_tac "x!j")
-apply clarify
-apply simp
-apply(drule_tac s="Some (Basic f)" in sym,simp)
-apply(case_tac "x!Suc j",simp)
-apply(rule ctran.cases,simp)
-apply(simp_all)
-apply(drule_tac c=sa in subsetD,simp)
-apply clarify
-apply(frule_tac j="Suc j" and k="length x - 1" and p=post in stability,simp_all)
- apply(case_tac x,simp+)
- apply(erule_tac x=i in allE)
-apply(erule_tac i=j and f=f in unique_ctran_Basic,simp_all)
- apply arith+
-apply(case_tac x)
-apply(simp add:last_length)+
-done
-
-subsubsection{* Soundness of the Await rule *}
-
-lemma unique_ctran_Await [rule_format]:
- "\<forall>s i. x \<in> cptn \<longrightarrow> x ! 0 = (Some (Await b c), s) \<longrightarrow>
- Suc i<length x \<longrightarrow> x!i -c\<rightarrow> x!Suc i \<longrightarrow>
- (\<forall>j. Suc j<length x \<longrightarrow> i\<noteq>j \<longrightarrow> x!j -e\<rightarrow> x!Suc j)"
-apply(induct x,simp+)
-apply clarify
-apply(erule cptn.cases,simp)
- apply(case_tac i,simp+)
- apply clarify
- apply(case_tac j,simp)
- apply(rule Env)
- apply simp
-apply clarify
-apply simp
-apply(case_tac i)
- apply(case_tac j,simp,simp)
- apply(erule ctran.cases,simp_all)
- apply(force elim: not_ctran_None)
-apply(ind_cases "((Some (Await b c), sa), Q, t) \<in> ctran" for sa Q t,simp)
-apply(drule_tac i=nat in not_ctran_None,simp)
-apply(erule etranE,simp)
-done
-
-lemma exists_ctran_Await_None [rule_format]:
- "\<forall>s i. x \<in> cptn \<longrightarrow> x ! 0 = (Some (Await b c), s)
- \<longrightarrow> i<length x \<longrightarrow> fst(x!i)=None \<longrightarrow> (\<exists>j<i. x!j -c\<rightarrow> x!Suc j)"
-apply(induct x,simp+)
-apply clarify
-apply(erule cptn.cases,simp)
- apply(case_tac i,simp+)
- apply(erule_tac x=nat in allE,simp)
- apply clarify
- apply(rule_tac x="Suc j" in exI,simp,simp)
-apply clarify
-apply(case_tac i,simp,simp)
-apply(rule_tac x=0 in exI,simp)
-done
-
-lemma Star_imp_cptn:
- "(P, s) -c*\<rightarrow> (R, t) \<Longrightarrow> \<exists>l \<in> cp P s. (last l)=(R, t)
- \<and> (\<forall>i. Suc i<length l \<longrightarrow> l!i -c\<rightarrow> l!Suc i)"
-apply (erule converse_rtrancl_induct2)
- apply(rule_tac x="[(R,t)]" in bexI)
- apply simp
- apply(simp add:cp_def)
- apply(rule CptnOne)
-apply clarify
-apply(rule_tac x="(a, b)#l" in bexI)
- apply (rule conjI)
- apply(case_tac l,simp add:cp_def)
- apply(simp add:last_length)
- apply clarify
-apply(case_tac i,simp)
-apply(simp add:cp_def)
-apply force
-apply(simp add:cp_def)
- apply(case_tac l)
- apply(force elim:cptn.cases)
-apply simp
-apply(erule CptnComp)
-apply clarify
-done
-
-lemma Await_sound:
- "\<lbrakk>stable pre rely; stable post rely;
- \<forall>V. \<turnstile> P sat [pre \<inter> b \<inter> {s. s = V}, {(s, t). s = t},
- UNIV, {s. (V, s) \<in> guar} \<inter> post] \<and>
- \<Turnstile> P sat [pre \<inter> b \<inter> {s. s = V}, {(s, t). s = t},
- UNIV, {s. (V, s) \<in> guar} \<inter> post] \<rbrakk>
- \<Longrightarrow> \<Turnstile> Await b P sat [pre, rely, guar, post]"
-apply(unfold com_validity_def)
-apply clarify
-apply(simp add:comm_def)
-apply(rule conjI)
- apply clarify
- apply(simp add:cp_def assum_def)
- apply clarify
- apply(frule_tac j=0 and k=i and p=pre in stability,simp_all)
- apply(erule_tac x=ia in allE,simp)
- apply(subgoal_tac "x\<in> cp (Some(Await b P)) s")
- apply(erule_tac i=i in unique_ctran_Await,force,simp_all)
- apply(simp add:cp_def)
---{* here starts the different part. *}
- apply(erule ctran.cases,simp_all)
- apply(drule Star_imp_cptn)
- apply clarify
- apply(erule_tac x=sa in allE)
- apply clarify
- apply(erule_tac x=sa in allE)
- apply(drule_tac c=l in subsetD)
- apply (simp add:cp_def)
- apply clarify
- apply(erule_tac x=ia and P="\<lambda>i. ?H i \<longrightarrow> (?J i,?I i)\<in>ctran" in allE,simp)
- apply(erule etranE,simp)
- apply simp
-apply clarify
-apply(simp add:cp_def)
-apply clarify
-apply(frule_tac i="length x - 1" in exists_ctran_Await_None,force)
- apply (case_tac x,simp+)
- apply(rule last_fst_esp,simp add:last_length)
- apply(case_tac x, (simp add:cptn_not_empty)+)
-apply clarify
-apply(simp add:assum_def)
-apply clarify
-apply(frule_tac j=0 and k="j" and p=pre in stability,simp_all)
- apply(erule_tac x=i in allE,simp)
- apply(erule_tac i=j in unique_ctran_Await,force,simp_all)
-apply(case_tac "x!j")
-apply clarify
-apply simp
-apply(drule_tac s="Some (Await b P)" in sym,simp)
-apply(case_tac "x!Suc j",simp)
-apply(rule ctran.cases,simp)
-apply(simp_all)
-apply(drule Star_imp_cptn)
-apply clarify
-apply(erule_tac x=sa in allE)
-apply clarify
-apply(erule_tac x=sa in allE)
-apply(drule_tac c=l in subsetD)
- apply (simp add:cp_def)
- apply clarify
- apply(erule_tac x=i and P="\<lambda>i. ?H i \<longrightarrow> (?J i,?I i)\<in>ctran" in allE,simp)
- apply(erule etranE,simp)
-apply simp
-apply clarify
-apply(frule_tac j="Suc j" and k="length x - 1" and p=post in stability,simp_all)
- apply(case_tac x,simp+)
- apply(erule_tac x=i in allE)
-apply(erule_tac i=j in unique_ctran_Await,force,simp_all)
- apply arith+
-apply(case_tac x)
-apply(simp add:last_length)+
-done
-
-subsubsection{* Soundness of the Conditional rule *}
-
-lemma Cond_sound:
- "\<lbrakk> stable pre rely; \<Turnstile> P1 sat [pre \<inter> b, rely, guar, post];
- \<Turnstile> P2 sat [pre \<inter> - b, rely, guar, post]; \<forall>s. (s,s)\<in>guar\<rbrakk>
- \<Longrightarrow> \<Turnstile> (Cond b P1 P2) sat [pre, rely, guar, post]"
-apply(unfold com_validity_def)
-apply clarify
-apply(simp add:cp_def comm_def)
-apply(case_tac "\<exists>i. Suc i<length x \<and> x!i -c\<rightarrow> x!Suc i")
- prefer 2
- apply simp
- apply clarify
- apply(frule_tac j="0" and k="length x - 1" and p=pre in stability,simp+)
- apply(case_tac x,simp+)
- apply(simp add:assum_def)
- apply(simp add:assum_def)
- apply(erule_tac m="length x" in etran_or_ctran,simp+)
- apply(case_tac x, (simp add:last_length)+)
-apply(erule exE)
-apply(drule_tac n=i and P="\<lambda>i. ?H i \<and> (?J i,?I i)\<in> ctran" in Ex_first_occurrence)
-apply clarify
-apply (simp add:assum_def)
-apply(frule_tac j=0 and k="m" and p=pre in stability,simp+)
- apply(erule_tac m="Suc m" in etran_or_ctran,simp+)
-apply(erule ctran.cases,simp_all)
- apply(erule_tac x="sa" in allE)
- apply(drule_tac c="drop (Suc m) x" in subsetD)
- apply simp
- apply clarify
- apply simp
- apply clarify
- apply(case_tac "i\<le>m")
- apply(drule le_imp_less_or_eq)
- apply(erule disjE)
- apply(erule_tac x=i in allE, erule impE, assumption)
- apply simp+
- apply(erule_tac x="i - (Suc m)" and P="\<lambda>j. ?H j \<longrightarrow> ?J j \<longrightarrow> (?I j)\<in>guar" in allE)
- apply(subgoal_tac "(Suc m)+(i - Suc m) \<le> length x")
- apply(subgoal_tac "(Suc m)+Suc (i - Suc m) \<le> length x")
- apply(rotate_tac -2)
- apply simp
- apply arith
- apply arith
-apply(case_tac "length (drop (Suc m) x)",simp)
-apply(erule_tac x="sa" in allE)
-back
-apply(drule_tac c="drop (Suc m) x" in subsetD,simp)
- apply clarify
-apply simp
-apply clarify
-apply(case_tac "i\<le>m")
- apply(drule le_imp_less_or_eq)
- apply(erule disjE)
- apply(erule_tac x=i in allE, erule impE, assumption)
- apply simp
- apply simp
-apply(erule_tac x="i - (Suc m)" and P="\<lambda>j. ?H j \<longrightarrow> ?J j \<longrightarrow> (?I j)\<in>guar" in allE)
-apply(subgoal_tac "(Suc m)+(i - Suc m) \<le> length x")
- apply(subgoal_tac "(Suc m)+Suc (i - Suc m) \<le> length x")
- apply(rotate_tac -2)
- apply simp
- apply arith
-apply arith
-done
-
-subsubsection{* Soundness of the Sequential rule *}
-
-inductive_cases Seq_cases [elim!]: "(Some (Seq P Q), s) -c\<rightarrow> t"
-
-lemma last_lift_not_None: "fst ((lift Q) ((x#xs)!(length xs))) \<noteq> None"
-apply(subgoal_tac "length xs<length (x # xs)")
- apply(drule_tac Q=Q in lift_nth)
- apply(erule ssubst)
- apply (simp add:lift_def)
- apply(case_tac "(x # xs) ! length xs",simp)
-apply simp
-done
-
-declare map_eq_Cons_conv [simp del] Cons_eq_map_conv [simp del]
-lemma Seq_sound1 [rule_format]:
- "x\<in> cptn_mod \<Longrightarrow> \<forall>s P. x !0=(Some (Seq P Q), s) \<longrightarrow>
- (\<forall>i<length x. fst(x!i)\<noteq>Some Q) \<longrightarrow>
- (\<exists>xs\<in> cp (Some P) s. x=map (lift Q) xs)"
-apply(erule cptn_mod.induct)
-apply(unfold cp_def)
-apply safe
-apply simp_all
- apply(simp add:lift_def)
- apply(rule_tac x="[(Some Pa, sa)]" in exI,simp add:CptnOne)
- apply(subgoal_tac "(\<forall>i < Suc (length xs). fst (((Some (Seq Pa Q), t) # xs) ! i) \<noteq> Some Q)")
- apply clarify
- apply(rule_tac x="(Some Pa, sa) #(Some Pa, t) # zs" in exI,simp)
- apply(rule conjI,erule CptnEnv)
- apply(simp (no_asm_use) add:lift_def)
- apply clarify
- apply(erule_tac x="Suc i" in allE, simp)
- apply(ind_cases "((Some (Seq Pa Q), sa), None, t) \<in> ctran" for Pa sa t)
- apply(rule_tac x="(Some P, sa) # xs" in exI, simp add:cptn_iff_cptn_mod lift_def)
-apply(erule_tac x="length xs" in allE, simp)
-apply(simp only:Cons_lift_append)
-apply(subgoal_tac "length xs < length ((Some P, sa) # xs)")
- apply(simp only :nth_append length_map last_length nth_map)
- apply(case_tac "last((Some P, sa) # xs)")
- apply(simp add:lift_def)
-apply simp
-done
-declare map_eq_Cons_conv [simp del] Cons_eq_map_conv [simp del]
-
-lemma Seq_sound2 [rule_format]:
- "x \<in> cptn \<Longrightarrow> \<forall>s P i. x!0=(Some (Seq P Q), s) \<longrightarrow> i<length x
- \<longrightarrow> fst(x!i)=Some Q \<longrightarrow>
- (\<forall>j<i. fst(x!j)\<noteq>(Some Q)) \<longrightarrow>
- (\<exists>xs ys. xs \<in> cp (Some P) s \<and> length xs=Suc i
- \<and> ys \<in> cp (Some Q) (snd(xs !i)) \<and> x=(map (lift Q) xs)@tl ys)"
-apply(erule cptn.induct)
-apply(unfold cp_def)
-apply safe
-apply simp_all
- apply(case_tac i,simp+)
- apply(erule allE,erule impE,assumption,simp)
- apply clarify
- apply(subgoal_tac "(\<forall>j < nat. fst (((Some (Seq Pa Q), t) # xs) ! j) \<noteq> Some Q)",clarify)
- prefer 2
- apply force
- apply(case_tac xsa,simp,simp)
- apply(rule_tac x="(Some Pa, sa) #(Some Pa, t) # list" in exI,simp)
- apply(rule conjI,erule CptnEnv)
- apply(simp (no_asm_use) add:lift_def)
- apply(rule_tac x=ys in exI,simp)
-apply(ind_cases "((Some (Seq Pa Q), sa), t) \<in> ctran" for Pa sa t)
- apply simp
- apply(rule_tac x="(Some Pa, sa)#[(None, ta)]" in exI,simp)
- apply(rule conjI)
- apply(drule_tac xs="[]" in CptnComp,force simp add:CptnOne,simp)
- apply(case_tac i, simp+)
- apply(case_tac nat,simp+)
- apply(rule_tac x="(Some Q,ta)#xs" in exI,simp add:lift_def)
- apply(case_tac nat,simp+)
- apply(force)
-apply(case_tac i, simp+)
-apply(case_tac nat,simp+)
-apply(erule_tac x="Suc nata" in allE,simp)
-apply clarify
-apply(subgoal_tac "(\<forall>j<Suc nata. fst (((Some (Seq P2 Q), ta) # xs) ! j) \<noteq> Some Q)",clarify)
- prefer 2
- apply clarify
- apply force
-apply(rule_tac x="(Some Pa, sa)#(Some P2, ta)#(tl xsa)" in exI,simp)
-apply(rule conjI,erule CptnComp)
-apply(rule nth_tl_if,force,simp+)
-apply(rule_tac x=ys in exI,simp)
-apply(rule conjI)
-apply(rule nth_tl_if,force,simp+)
- apply(rule tl_zero,simp+)
- apply force
-apply(rule conjI,simp add:lift_def)
-apply(subgoal_tac "lift Q (Some P2, ta) =(Some (Seq P2 Q), ta)")
- apply(simp add:Cons_lift del:map.simps)
- apply(rule nth_tl_if)
- apply force
- apply simp+
-apply(simp add:lift_def)
-done
-(*
-lemma last_lift_not_None3: "fst (last (map (lift Q) (x#xs))) \<noteq> None"
-apply(simp only:last_length [THEN sym])
-apply(subgoal_tac "length xs<length (x # xs)")
- apply(drule_tac Q=Q in lift_nth)
- apply(erule ssubst)
- apply (simp add:lift_def)
- apply(case_tac "(x # xs) ! length xs",simp)
-apply simp
-done
-*)
-
-lemma last_lift_not_None2: "fst ((lift Q) (last (x#xs))) \<noteq> None"
-apply(simp only:last_length [THEN sym])
-apply(subgoal_tac "length xs<length (x # xs)")
- apply(drule_tac Q=Q in lift_nth)
- apply(erule ssubst)
- apply (simp add:lift_def)
- apply(case_tac "(x # xs) ! length xs",simp)
-apply simp
-done
-
-lemma Seq_sound:
- "\<lbrakk>\<Turnstile> P sat [pre, rely, guar, mid]; \<Turnstile> Q sat [mid, rely, guar, post]\<rbrakk>
- \<Longrightarrow> \<Turnstile> Seq P Q sat [pre, rely, guar, post]"
-apply(unfold com_validity_def)
-apply clarify
-apply(case_tac "\<exists>i<length x. fst(x!i)=Some Q")
- prefer 2
- apply (simp add:cp_def cptn_iff_cptn_mod)
- apply clarify
- apply(frule_tac Seq_sound1,force)
- apply force
- apply clarify
- apply(erule_tac x=s in allE,simp)
- apply(drule_tac c=xs in subsetD,simp add:cp_def cptn_iff_cptn_mod)
- apply(simp add:assum_def)
- apply clarify
- apply(erule_tac P="\<lambda>j. ?H j \<longrightarrow> ?J j \<longrightarrow> ?I j" in allE,erule impE, assumption)
- apply(simp add:snd_lift)
- apply(erule mp)
- apply(force elim:etranE intro:Env simp add:lift_def)
- apply(simp add:comm_def)
- apply(rule conjI)
- apply clarify
- apply(erule_tac P="\<lambda>j. ?H j \<longrightarrow> ?J j \<longrightarrow> ?I j" in allE,erule impE, assumption)
- apply(simp add:snd_lift)
- apply(erule mp)
- apply(case_tac "(xs!i)")
- apply(case_tac "(xs! Suc i)")
- apply(case_tac "fst(xs!i)")
- apply(erule_tac x=i in allE, simp add:lift_def)
- apply(case_tac "fst(xs!Suc i)")
- apply(force simp add:lift_def)
- apply(force simp add:lift_def)
- apply clarify
- apply(case_tac xs,simp add:cp_def)
- apply clarify
- apply (simp del:map.simps)
- apply(subgoal_tac "(map (lift Q) ((a, b) # list))\<noteq>[]")
- apply(drule last_conv_nth)
- apply (simp del:map.simps)
- apply(simp only:last_lift_not_None)
- apply simp
---{* @{text "\<exists>i<length x. fst (x ! i) = Some Q"} *}
-apply(erule exE)
-apply(drule_tac n=i and P="\<lambda>i. i < length x \<and> fst (x ! i) = Some Q" in Ex_first_occurrence)
-apply clarify
-apply (simp add:cp_def)
- apply clarify
- apply(frule_tac i=m in Seq_sound2,force)
- apply simp+
-apply clarify
-apply(simp add:comm_def)
-apply(erule_tac x=s in allE)
-apply(drule_tac c=xs in subsetD,simp)
- apply(case_tac "xs=[]",simp)
- apply(simp add:cp_def assum_def nth_append)
- apply clarify
- apply(erule_tac x=i in allE)
- back
- apply(simp add:snd_lift)
- apply(erule mp)
- apply(force elim:etranE intro:Env simp add:lift_def)
-apply simp
-apply clarify
-apply(erule_tac x="snd(xs!m)" in allE)
-apply(drule_tac c=ys in subsetD,simp add:cp_def assum_def)
- apply(case_tac "xs\<noteq>[]")
- apply(drule last_conv_nth,simp)
- apply(rule conjI)
- apply(erule mp)
- apply(case_tac "xs!m")
- apply(case_tac "fst(xs!m)",simp)
- apply(simp add:lift_def nth_append)
- apply clarify
- apply(erule_tac x="m+i" in allE)
- back
- back
- apply(case_tac ys,(simp add:nth_append)+)
- apply (case_tac i, (simp add:snd_lift)+)
- apply(erule mp)
- apply(case_tac "xs!m")
- apply(force elim:etran.cases intro:Env simp add:lift_def)
- apply simp
-apply simp
-apply clarify
-apply(rule conjI,clarify)
- apply(case_tac "i<m",simp add:nth_append)
- apply(simp add:snd_lift)
- apply(erule allE, erule impE, assumption, erule mp)
- apply(case_tac "(xs ! i)")
- apply(case_tac "(xs ! Suc i)")
- apply(case_tac "fst(xs ! i)",force simp add:lift_def)
- apply(case_tac "fst(xs ! Suc i)")
- apply (force simp add:lift_def)
- apply (force simp add:lift_def)
- apply(erule_tac x="i-m" in allE)
- back
- back
- apply(subgoal_tac "Suc (i - m) < length ys",simp)
- prefer 2
- apply arith
- apply(simp add:nth_append snd_lift)
- apply(rule conjI,clarify)
- apply(subgoal_tac "i=m")
- prefer 2
- apply arith
- apply clarify
- apply(simp add:cp_def)
- apply(rule tl_zero)
- apply(erule mp)
- apply(case_tac "lift Q (xs!m)",simp add:snd_lift)
- apply(case_tac "xs!m",case_tac "fst(xs!m)",simp add:lift_def snd_lift)
- apply(case_tac ys,simp+)
- apply(simp add:lift_def)
- apply simp
- apply force
- apply clarify
- apply(rule tl_zero)
- apply(rule tl_zero)
- apply (subgoal_tac "i-m=Suc(i-Suc m)")
- apply simp
- apply(erule mp)
- apply(case_tac ys,simp+)
- apply force
- apply arith
- apply force
-apply clarify
-apply(case_tac "(map (lift Q) xs @ tl ys)\<noteq>[]")
- apply(drule last_conv_nth)
- apply(simp add: snd_lift nth_append)
- apply(rule conjI,clarify)
- apply(case_tac ys,simp+)
- apply clarify
- apply(case_tac ys,simp+)
-done
-
-subsubsection{* Soundness of the While rule *}
-
-lemma last_append[rule_format]:
- "\<forall>xs. ys\<noteq>[] \<longrightarrow> ((xs@ys)!(length (xs@ys) - (Suc 0)))=(ys!(length ys - (Suc 0)))"
-apply(induct ys)
- apply simp
-apply clarify
-apply (simp add:nth_append length_append)
-done
-
-lemma assum_after_body:
- "\<lbrakk> \<Turnstile> P sat [pre \<inter> b, rely, guar, pre];
- (Some P, s) # xs \<in> cptn_mod; fst (last ((Some P, s) # xs)) = None; s \<in> b;
- (Some (While b P), s) # (Some (Seq P (While b P)), s) #
- map (lift (While b P)) xs @ ys \<in> assum (pre, rely)\<rbrakk>
- \<Longrightarrow> (Some (While b P), snd (last ((Some P, s) # xs))) # ys \<in> assum (pre, rely)"
-apply(simp add:assum_def com_validity_def cp_def cptn_iff_cptn_mod)
-apply clarify
-apply(erule_tac x=s in allE)
-apply(drule_tac c="(Some P, s) # xs" in subsetD,simp)
- apply clarify
- apply(erule_tac x="Suc i" in allE)
- apply simp
- apply(simp add:Cons_lift_append nth_append snd_lift del:map.simps)
- apply(erule mp)
- apply(erule etranE,simp)
- apply(case_tac "fst(((Some P, s) # xs) ! i)")
- apply(force intro:Env simp add:lift_def)
- apply(force intro:Env simp add:lift_def)
-apply(rule conjI)
- apply clarify
- apply(simp add:comm_def last_length)
-apply clarify
-apply(rule conjI)
- apply(simp add:comm_def)
-apply clarify
-apply(erule_tac x="Suc(length xs + i)" in allE,simp)
-apply(case_tac i, simp add:nth_append Cons_lift_append snd_lift del:map.simps)
- apply(simp add:last_length)
- apply(erule mp)
- apply(case_tac "last xs")
- apply(simp add:lift_def)
-apply(simp add:Cons_lift_append nth_append snd_lift del:map.simps)
-done
-
-lemma While_sound_aux [rule_format]:
- "\<lbrakk> pre \<inter> - b \<subseteq> post; \<Turnstile> P sat [pre \<inter> b, rely, guar, pre]; \<forall>s. (s, s) \<in> guar;
- stable pre rely; stable post rely; x \<in> cptn_mod \<rbrakk>
- \<Longrightarrow> \<forall>s xs. x=(Some(While b P),s)#xs \<longrightarrow> x\<in>assum(pre, rely) \<longrightarrow> x \<in> comm (guar, post)"
-apply(erule cptn_mod.induct)
-apply safe
-apply (simp_all del:last.simps)
---{* 5 subgoals left *}
-apply(simp add:comm_def)
---{* 4 subgoals left *}
-apply(rule etran_in_comm)
-apply(erule mp)
-apply(erule tl_of_assum_in_assum,simp)
---{* While-None *}
-apply(ind_cases "((Some (While b P), s), None, t) \<in> ctran" for s t)
-apply(simp add:comm_def)
-apply(simp add:cptn_iff_cptn_mod [THEN sym])
-apply(rule conjI,clarify)
- apply(force simp add:assum_def)
-apply clarify
-apply(rule conjI, clarify)
- apply(case_tac i,simp,simp)
- apply(force simp add:not_ctran_None2)
-apply(subgoal_tac "\<forall>i. Suc i < length ((None, t) # xs) \<longrightarrow> (((None, t) # xs) ! i, ((None, t) # xs) ! Suc i)\<in> etran")
- prefer 2
- apply clarify
- apply(rule_tac m="length ((None, s) # xs)" in etran_or_ctran,simp+)
- apply(erule not_ctran_None2,simp)
- apply simp+
-apply(frule_tac j="0" and k="length ((None, s) # xs) - 1" and p=post in stability,simp+)
- apply(force simp add:assum_def subsetD)
- apply(simp add:assum_def)
- apply clarify
- apply(erule_tac x="i" in allE,simp)
- apply(erule_tac x="Suc i" in allE,simp)
- apply simp
-apply clarify
-apply (simp add:last_length)
---{* WhileOne *}
-apply(thin_tac "P = While b P \<longrightarrow> ?Q")
-apply(rule ctran_in_comm,simp)
-apply(simp add:Cons_lift del:map.simps)
-apply(simp add:comm_def del:map.simps)
-apply(rule conjI)
- apply clarify
- apply(case_tac "fst(((Some P, sa) # xs) ! i)")
- apply(case_tac "((Some P, sa) # xs) ! i")
- apply (simp add:lift_def)
- apply(ind_cases "(Some (While b P), ba) -c\<rightarrow> t" for ba t)
- apply simp
- apply simp
- apply(simp add:snd_lift del:map.simps)
- apply(simp only:com_validity_def cp_def cptn_iff_cptn_mod)
- apply(erule_tac x=sa in allE)
- apply(drule_tac c="(Some P, sa) # xs" in subsetD)
- apply (simp add:assum_def del:map.simps)
- apply clarify
- apply(erule_tac x="Suc ia" in allE,simp add:snd_lift del:map.simps)
- apply(erule mp)
- apply(case_tac "fst(((Some P, sa) # xs) ! ia)")
- apply(erule etranE,simp add:lift_def)
- apply(rule Env)
- apply(erule etranE,simp add:lift_def)
- apply(rule Env)
- apply (simp add:comm_def del:map.simps)
- apply clarify
- apply(erule allE,erule impE,assumption)
- apply(erule mp)
- apply(case_tac "((Some P, sa) # xs) ! i")
- apply(case_tac "xs!i")
- apply(simp add:lift_def)
- apply(case_tac "fst(xs!i)")
- apply force
- apply force
---{* last=None *}
-apply clarify
-apply(subgoal_tac "(map (lift (While b P)) ((Some P, sa) # xs))\<noteq>[]")
- apply(drule last_conv_nth)
- apply (simp del:map.simps)
- apply(simp only:last_lift_not_None)
-apply simp
---{* WhileMore *}
-apply(thin_tac "P = While b P \<longrightarrow> ?Q")
-apply(rule ctran_in_comm,simp del:last.simps)
---{* metiendo la hipotesis antes de dividir la conclusion. *}
-apply(subgoal_tac "(Some (While b P), snd (last ((Some P, sa) # xs))) # ys \<in> assum (pre, rely)")
- apply (simp del:last.simps)
- prefer 2
- apply(erule assum_after_body)
- apply (simp del:last.simps)+
---{* lo de antes. *}
-apply(simp add:comm_def del:map.simps last.simps)
-apply(rule conjI)
- apply clarify
- apply(simp only:Cons_lift_append)
- apply(case_tac "i<length xs")
- apply(simp add:nth_append del:map.simps last.simps)
- apply(case_tac "fst(((Some P, sa) # xs) ! i)")
- apply(case_tac "((Some P, sa) # xs) ! i")
- apply (simp add:lift_def del:last.simps)
- apply(ind_cases "(Some (While b P), ba) -c\<rightarrow> t" for ba t)
- apply simp
- apply simp
- apply(simp add:snd_lift del:map.simps last.simps)
- apply(thin_tac " \<forall>i. i < length ys \<longrightarrow> ?P i")
- apply(simp only:com_validity_def cp_def cptn_iff_cptn_mod)
- apply(erule_tac x=sa in allE)
- apply(drule_tac c="(Some P, sa) # xs" in subsetD)
- apply (simp add:assum_def del:map.simps last.simps)
- apply clarify
- apply(erule_tac x="Suc ia" in allE,simp add:nth_append snd_lift del:map.simps last.simps, erule mp)
- apply(case_tac "fst(((Some P, sa) # xs) ! ia)")
- apply(erule etranE,simp add:lift_def)
- apply(rule Env)
- apply(erule etranE,simp add:lift_def)
- apply(rule Env)
- apply (simp add:comm_def del:map.simps)
- apply clarify
- apply(erule allE,erule impE,assumption)
- apply(erule mp)
- apply(case_tac "((Some P, sa) # xs) ! i")
- apply(case_tac "xs!i")
- apply(simp add:lift_def)
- apply(case_tac "fst(xs!i)")
- apply force
- apply force
---{* @{text "i \<ge> length xs"} *}
-apply(subgoal_tac "i-length xs <length ys")
- prefer 2
- apply arith
-apply(erule_tac x="i-length xs" in allE,clarify)
-apply(case_tac "i=length xs")
- apply (simp add:nth_append snd_lift del:map.simps last.simps)
- apply(simp add:last_length del:last.simps)
- apply(erule mp)
- apply(case_tac "last((Some P, sa) # xs)")
- apply(simp add:lift_def del:last.simps)
---{* @{text "i>length xs"} *}
-apply(case_tac "i-length xs")
- apply arith
-apply(simp add:nth_append del:map.simps last.simps)
-apply(rotate_tac -3)
-apply(subgoal_tac "i- Suc (length xs)=nat")
- prefer 2
- apply arith
-apply simp
---{* last=None *}
-apply clarify
-apply(case_tac ys)
- apply(simp add:Cons_lift del:map.simps last.simps)
- apply(subgoal_tac "(map (lift (While b P)) ((Some P, sa) # xs))\<noteq>[]")
- apply(drule last_conv_nth)
- apply (simp del:map.simps)
- apply(simp only:last_lift_not_None)
- apply simp
-apply(subgoal_tac "((Some (Seq P (While b P)), sa) # map (lift (While b P)) xs @ ys)\<noteq>[]")
- apply(drule last_conv_nth)
- apply (simp del:map.simps last.simps)
- apply(simp add:nth_append del:last.simps)
- apply(subgoal_tac "((Some (While b P), snd (last ((Some P, sa) # xs))) # a # list)\<noteq>[]")
- apply(drule last_conv_nth)
- apply (simp del:map.simps last.simps)
- apply simp
-apply simp
-done
-
-lemma While_sound:
- "\<lbrakk>stable pre rely; pre \<inter> - b \<subseteq> post; stable post rely;
- \<Turnstile> P sat [pre \<inter> b, rely, guar, pre]; \<forall>s. (s,s)\<in>guar\<rbrakk>
- \<Longrightarrow> \<Turnstile> While b P sat [pre, rely, guar, post]"
-apply(unfold com_validity_def)
-apply clarify
-apply(erule_tac xs="tl x" in While_sound_aux)
- apply(simp add:com_validity_def)
- apply force
- apply simp_all
-apply(simp add:cptn_iff_cptn_mod cp_def)
-apply(simp add:cp_def)
-apply clarify
-apply(rule nth_equalityI)
- apply simp_all
- apply(case_tac x,simp+)
-apply clarify
-apply(case_tac i,simp+)
-apply(case_tac x,simp+)
-done
-
-subsubsection{* Soundness of the Rule of Consequence *}
-
-lemma Conseq_sound:
- "\<lbrakk>pre \<subseteq> pre'; rely \<subseteq> rely'; guar' \<subseteq> guar; post' \<subseteq> post;
- \<Turnstile> P sat [pre', rely', guar', post']\<rbrakk>
- \<Longrightarrow> \<Turnstile> P sat [pre, rely, guar, post]"
-apply(simp add:com_validity_def assum_def comm_def)
-apply clarify
-apply(erule_tac x=s in allE)
-apply(drule_tac c=x in subsetD)
- apply force
-apply force
-done
-
-subsubsection {* Soundness of the system for sequential component programs *}
-
-theorem rgsound:
- "\<turnstile> P sat [pre, rely, guar, post] \<Longrightarrow> \<Turnstile> P sat [pre, rely, guar, post]"
-apply(erule rghoare.induct)
- apply(force elim:Basic_sound)
- apply(force elim:Seq_sound)
- apply(force elim:Cond_sound)
- apply(force elim:While_sound)
- apply(force elim:Await_sound)
-apply(erule Conseq_sound,simp+)
-done
-
-subsection {* Soundness of the System for Parallel Programs *}
-
-constdefs
- ParallelCom :: "('a rgformula) list \<Rightarrow> 'a par_com"
- "ParallelCom Ps \<equiv> map (Some \<circ> fst) Ps"
-
-lemma two:
- "\<lbrakk> \<forall>i<length xs. rely \<union> (\<Union>j\<in>{j. j < length xs \<and> j \<noteq> i}. Guar (xs ! j))
- \<subseteq> Rely (xs ! i);
- pre \<subseteq> (\<Inter>i\<in>{i. i < length xs}. Pre (xs ! i));
- \<forall>i<length xs.
- \<Turnstile> Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)];
- length xs=length clist; x \<in> par_cp (ParallelCom xs) s; x\<in>par_assum(pre, rely);
- \<forall>i<length clist. clist!i\<in>cp (Some(Com(xs!i))) s; x \<propto> clist \<rbrakk>
- \<Longrightarrow> \<forall>j i. i<length clist \<and> Suc j<length x \<longrightarrow> (clist!i!j) -c\<rightarrow> (clist!i!Suc j)
- \<longrightarrow> (snd(clist!i!j), snd(clist!i!Suc j)) \<in> Guar(xs!i)"
-apply(unfold par_cp_def)
-apply (rule ccontr)
---{* By contradiction: *}
-apply (simp del: Un_subset_iff)
-apply(erule exE)
---{* the first c-tran that does not satisfy the guarantee-condition is from @{text "\<sigma>_i"} at step @{text "m"}. *}
-apply(drule_tac n=j and P="\<lambda>j. \<exists>i. ?H i j" in Ex_first_occurrence)
-apply(erule exE)
-apply clarify
---{* @{text "\<sigma>_i \<in> A(pre, rely_1)"} *}
-apply(subgoal_tac "take (Suc (Suc m)) (clist!i) \<in> assum(Pre(xs!i), Rely(xs!i))")
---{* but this contradicts @{text "\<Turnstile> \<sigma>_i sat [pre_i,rely_i,guar_i,post_i]"} *}
- apply(erule_tac x=i and P="\<lambda>i. ?H i \<longrightarrow> \<Turnstile> (?J i) sat [?I i,?K i,?M i,?N i]" in allE,erule impE,assumption)
- apply(simp add:com_validity_def)
- apply(erule_tac x=s in allE)
- apply(simp add:cp_def comm_def)
- apply(drule_tac c="take (Suc (Suc m)) (clist ! i)" in subsetD)
- apply simp
- apply (blast intro: takecptn_is_cptn)
- apply simp
- apply clarify
- apply(erule_tac x=m and P="\<lambda>j. ?I j \<and> ?J j \<longrightarrow> ?H j" in allE)
- apply (simp add:conjoin_def same_length_def)
-apply(simp add:assum_def del: Un_subset_iff)
-apply(rule conjI)
- apply(erule_tac x=i and P="\<lambda>j. ?H j \<longrightarrow> ?I j \<in>cp (?K j) (?J j)" in allE)
- apply(simp add:cp_def par_assum_def)
- apply(drule_tac c="s" in subsetD,simp)
- apply simp
-apply clarify
-apply(erule_tac x=i and P="\<lambda>j. ?H j \<longrightarrow> ?M \<union> UNION (?S j) (?T j) \<subseteq> (?L j)" in allE)
-apply(simp del: Un_subset_iff)
-apply(erule subsetD)
-apply simp
-apply(simp add:conjoin_def compat_label_def)
-apply clarify
-apply(erule_tac x=ia and P="\<lambda>j. ?H j \<longrightarrow> (?P j) \<or> ?Q j" in allE,simp)
---{* each etran in @{text "\<sigma>_1[0\<dots>m]"} corresponds to *}
-apply(erule disjE)
---{* a c-tran in some @{text "\<sigma>_{ib}"} *}
- apply clarify
- apply(case_tac "i=ib",simp)
- apply(erule etranE,simp)
- apply(erule_tac x="ib" and P="\<lambda>i. ?H i \<longrightarrow> (?I i) \<or> (?J i)" in allE)
- apply (erule etranE)
- apply(case_tac "ia=m",simp)
- apply simp
- apply(erule_tac x=ia and P="\<lambda>j. ?H j \<longrightarrow> (\<forall> i. ?P i j)" in allE)
- apply(subgoal_tac "ia<m",simp)
- prefer 2
- apply arith
- apply(erule_tac x=ib and P="\<lambda>j. (?I j, ?H j)\<in> ctran \<longrightarrow> (?P i j)" in allE,simp)
- apply(simp add:same_state_def)
- apply(erule_tac x=i and P="\<lambda>j. (?T j) \<longrightarrow> (\<forall>i. (?H j i) \<longrightarrow> (snd (?d j i))=(snd (?e j i)))" in all_dupE)
- apply(erule_tac x=ib and P="\<lambda>j. (?T j) \<longrightarrow> (\<forall>i. (?H j i) \<longrightarrow> (snd (?d j i))=(snd (?e j i)))" in allE,simp)
---{* or an e-tran in @{text "\<sigma>"},
-therefore it satisfies @{text "rely \<or> guar_{ib}"} *}
-apply (force simp add:par_assum_def same_state_def)
-done
-
-
-lemma three [rule_format]:
- "\<lbrakk> xs\<noteq>[]; \<forall>i<length xs. rely \<union> (\<Union>j\<in>{j. j < length xs \<and> j \<noteq> i}. Guar (xs ! j))
- \<subseteq> Rely (xs ! i);
- pre \<subseteq> (\<Inter>i\<in>{i. i < length xs}. Pre (xs ! i));
- \<forall>i<length xs.
- \<Turnstile> Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)];
- length xs=length clist; x \<in> par_cp (ParallelCom xs) s; x \<in> par_assum(pre, rely);
- \<forall>i<length clist. clist!i\<in>cp (Some(Com(xs!i))) s; x \<propto> clist \<rbrakk>
- \<Longrightarrow> \<forall>j i. i<length clist \<and> Suc j<length x \<longrightarrow> (clist!i!j) -e\<rightarrow> (clist!i!Suc j)
- \<longrightarrow> (snd(clist!i!j), snd(clist!i!Suc j)) \<in> rely \<union> (\<Union>j\<in>{j. j < length xs \<and> j \<noteq> i}. Guar (xs ! j))"
-apply(drule two)
- apply simp_all
-apply clarify
-apply(simp add:conjoin_def compat_label_def)
-apply clarify
-apply(erule_tac x=j and P="\<lambda>j. ?H j \<longrightarrow> (?J j \<and> (\<exists>i. ?P i j)) \<or> ?I j" in allE,simp)
-apply(erule disjE)
- prefer 2
- apply(force simp add:same_state_def par_assum_def)
-apply clarify
-apply(case_tac "i=ia",simp)
- apply(erule etranE,simp)
-apply(erule_tac x="ia" and P="\<lambda>i. ?H i \<longrightarrow> (?I i) \<or> (?J i)" in allE,simp)
-apply(erule_tac x=j and P="\<lambda>j. \<forall>i. ?S j i \<longrightarrow> (?I j i, ?H j i)\<in> ctran \<longrightarrow> (?P i j)" in allE)
-apply(erule_tac x=ia and P="\<lambda>j. ?S j \<longrightarrow> (?I j, ?H j)\<in> ctran \<longrightarrow> (?P j)" in allE)
-apply(simp add:same_state_def)
-apply(erule_tac x=i and P="\<lambda>j. (?T j) \<longrightarrow> (\<forall>i. (?H j i) \<longrightarrow> (snd (?d j i))=(snd (?e j i)))" in all_dupE)
-apply(erule_tac x=ia and P="\<lambda>j. (?T j) \<longrightarrow> (\<forall>i. (?H j i) \<longrightarrow> (snd (?d j i))=(snd (?e j i)))" in allE,simp)
-done
-
-lemma four:
- "\<lbrakk>xs\<noteq>[]; \<forall>i < length xs. rely \<union> (\<Union>j\<in>{j. j < length xs \<and> j \<noteq> i}. Guar (xs ! j))
- \<subseteq> Rely (xs ! i);
- (\<Union>j\<in>{j. j < length xs}. Guar (xs ! j)) \<subseteq> guar;
- pre \<subseteq> (\<Inter>i\<in>{i. i < length xs}. Pre (xs ! i));
- \<forall>i < length xs.
- \<Turnstile> Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)];
- x \<in> par_cp (ParallelCom xs) s; x \<in> par_assum (pre, rely); Suc i < length x;
- x ! i -pc\<rightarrow> x ! Suc i\<rbrakk>
- \<Longrightarrow> (snd (x ! i), snd (x ! Suc i)) \<in> guar"
-apply(simp add: ParallelCom_def del: Un_subset_iff)
-apply(subgoal_tac "(map (Some \<circ> fst) xs)\<noteq>[]")
- prefer 2
- apply simp
-apply(frule rev_subsetD)
- apply(erule one [THEN equalityD1])
-apply(erule subsetD)
-apply (simp del: Un_subset_iff)
-apply clarify
-apply(drule_tac pre=pre and rely=rely and x=x and s=s and xs=xs and clist=clist in two)
-apply(assumption+)
- apply(erule sym)
- apply(simp add:ParallelCom_def)
- apply assumption
- apply(simp add:Com_def)
- apply assumption
-apply(simp add:conjoin_def same_program_def)
-apply clarify
-apply(erule_tac x=i and P="\<lambda>j. ?H j \<longrightarrow> fst(?I j)=(?J j)" in all_dupE)
-apply(erule_tac x="Suc i" and P="\<lambda>j. ?H j \<longrightarrow> fst(?I j)=(?J j)" in allE)
-apply(erule par_ctranE,simp)
-apply(erule_tac x=i and P="\<lambda>j. \<forall>i. ?S j i \<longrightarrow> (?I j i, ?H j i)\<in> ctran \<longrightarrow> (?P i j)" in allE)
-apply(erule_tac x=ia and P="\<lambda>j. ?S j \<longrightarrow> (?I j, ?H j)\<in> ctran \<longrightarrow> (?P j)" in allE)
-apply(rule_tac x=ia in exI)
-apply(simp add:same_state_def)
-apply(erule_tac x=ia and P="\<lambda>j. (?T j) \<longrightarrow> (\<forall>i. (?H j i) \<longrightarrow> (snd (?d j i))=(snd (?e j i)))" in all_dupE,simp)
-apply(erule_tac x=ia and P="\<lambda>j. (?T j) \<longrightarrow> (\<forall>i. (?H j i) \<longrightarrow> (snd (?d j i))=(snd (?e j i)))" in allE,simp)
-apply(erule_tac x=i and P="\<lambda>j. ?H j \<longrightarrow> (snd (?d j))=(snd (?e j))" in all_dupE)
-apply(erule_tac x=i and P="\<lambda>j. ?H j \<longrightarrow> (snd (?d j))=(snd (?e j))" in all_dupE,simp)
-apply(erule_tac x="Suc i" and P="\<lambda>j. ?H j \<longrightarrow> (snd (?d j))=(snd (?e j))" in allE,simp)
-apply(erule mp)
-apply(subgoal_tac "r=fst(clist ! ia ! Suc i)",simp)
-apply(drule_tac i=ia in list_eq_if)
-back
-apply simp_all
-done
-
-lemma parcptn_not_empty [simp]:"[] \<notin> par_cptn"
-apply(force elim:par_cptn.cases)
-done
-
-lemma five:
- "\<lbrakk>xs\<noteq>[]; \<forall>i<length xs. rely \<union> (\<Union>j\<in>{j. j < length xs \<and> j \<noteq> i}. Guar (xs ! j))
- \<subseteq> Rely (xs ! i);
- pre \<subseteq> (\<Inter>i\<in>{i. i < length xs}. Pre (xs ! i));
- (\<Inter>i\<in>{i. i < length xs}. Post (xs ! i)) \<subseteq> post;
- \<forall>i < length xs.
- \<Turnstile> Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)];
- x \<in> par_cp (ParallelCom xs) s; x \<in> par_assum (pre, rely);
- All_None (fst (last x)) \<rbrakk> \<Longrightarrow> snd (last x) \<in> post"
-apply(simp add: ParallelCom_def del: Un_subset_iff)
-apply(subgoal_tac "(map (Some \<circ> fst) xs)\<noteq>[]")
- prefer 2
- apply simp
-apply(frule rev_subsetD)
- apply(erule one [THEN equalityD1])
-apply(erule subsetD)
-apply(simp del: Un_subset_iff)
-apply clarify
-apply(subgoal_tac "\<forall>i<length clist. clist!i\<in>assum(Pre(xs!i), Rely(xs!i))")
- apply(erule_tac x=i and P="\<lambda>i. ?H i \<longrightarrow> \<Turnstile> (?J i) sat [?I i,?K i,?M i,?N i]" in allE,erule impE,assumption)
- apply(simp add:com_validity_def)
- apply(erule_tac x=s in allE)
- apply(erule_tac x=i and P="\<lambda>j. ?H j \<longrightarrow> (?I j) \<in> cp (?J j) s" in allE,simp)
- apply(drule_tac c="clist!i" in subsetD)
- apply (force simp add:Com_def)
- apply(simp add:comm_def conjoin_def same_program_def del:last.simps)
- apply clarify
- apply(erule_tac x="length x - 1" and P="\<lambda>j. ?H j \<longrightarrow> fst(?I j)=(?J j)" in allE)
- apply (simp add:All_None_def same_length_def)
- apply(erule_tac x=i and P="\<lambda>j. ?H j \<longrightarrow> length(?J j)=(?K j)" in allE)
- apply(subgoal_tac "length x - 1 < length x",simp)
- apply(case_tac "x\<noteq>[]")
- apply(simp add: last_conv_nth)
- apply(erule_tac x="clist!i" in ballE)
- apply(simp add:same_state_def)
- apply(subgoal_tac "clist!i\<noteq>[]")
- apply(simp add: last_conv_nth)
- apply(case_tac x)
- apply (force simp add:par_cp_def)
- apply (force simp add:par_cp_def)
- apply force
- apply (force simp add:par_cp_def)
- apply(case_tac x)
- apply (force simp add:par_cp_def)
- apply (force simp add:par_cp_def)
-apply clarify
-apply(simp add:assum_def)
-apply(rule conjI)
- apply(simp add:conjoin_def same_state_def par_cp_def)
- apply clarify
- apply(erule_tac x=ia and P="\<lambda>j. (?T j) \<longrightarrow> (\<forall>i. (?H j i) \<longrightarrow> (snd (?d j i))=(snd (?e j i)))" in allE,simp)
- apply(erule_tac x=0 and P="\<lambda>j. ?H j \<longrightarrow> (snd (?d j))=(snd (?e j))" in allE)
- apply(case_tac x,simp+)
- apply (simp add:par_assum_def)
- apply clarify
- apply(drule_tac c="snd (clist ! ia ! 0)" in subsetD)
- apply assumption
- apply simp
-apply clarify
-apply(erule_tac x=ia in all_dupE)
-apply(rule subsetD, erule mp, assumption)
-apply(erule_tac pre=pre and rely=rely and x=x and s=s in three)
- apply(erule_tac x=ic in allE,erule mp)
- apply simp_all
- apply(simp add:ParallelCom_def)
- apply(force simp add:Com_def)
-apply(simp add:conjoin_def same_length_def)
-done
-
-lemma ParallelEmpty [rule_format]:
- "\<forall>i s. x \<in> par_cp (ParallelCom []) s \<longrightarrow>
- Suc i < length x \<longrightarrow> (x ! i, x ! Suc i) \<notin> par_ctran"
-apply(induct_tac x)
- apply(simp add:par_cp_def ParallelCom_def)
-apply clarify
-apply(case_tac list,simp,simp)
-apply(case_tac i)
- apply(simp add:par_cp_def ParallelCom_def)
- apply(erule par_ctranE,simp)
-apply(simp add:par_cp_def ParallelCom_def)
-apply clarify
-apply(erule par_cptn.cases,simp)
- apply simp
-apply(erule par_ctranE)
-back
-apply simp
-done
-
-theorem par_rgsound:
- "\<turnstile> c SAT [pre, rely, guar, post] \<Longrightarrow>
- \<Turnstile> (ParallelCom c) SAT [pre, rely, guar, post]"
-apply(erule par_rghoare.induct)
-apply(case_tac xs,simp)
- apply(simp add:par_com_validity_def par_comm_def)
- apply clarify
- apply(case_tac "post=UNIV",simp)
- apply clarify
- apply(drule ParallelEmpty)
- apply assumption
- apply simp
- apply clarify
- apply simp
-apply(subgoal_tac "xs\<noteq>[]")
- prefer 2
- apply simp
-apply(thin_tac "xs = a # list")
-apply(simp add:par_com_validity_def par_comm_def)
-apply clarify
-apply(rule conjI)
- apply clarify
- apply(erule_tac pre=pre and rely=rely and guar=guar and x=x and s=s and xs=xs in four)
- apply(assumption+)
- apply clarify
- apply (erule allE, erule impE, assumption,erule rgsound)
- apply(assumption+)
-apply clarify
-apply(erule_tac pre=pre and rely=rely and post=post and x=x and s=s and xs=xs in five)
- apply(assumption+)
- apply clarify
- apply (erule allE, erule impE, assumption,erule rgsound)
- apply(assumption+)
-done
-
-end