doc-src/AxClass/Group/Product.thy
changeset 30101 5c6efec476ae
parent 30100 e1c714d33c5c
parent 29777 f3284860004c
child 30105 37f47ea6fed1
--- a/doc-src/AxClass/Group/Product.thy	Thu Feb 26 11:21:29 2009 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,85 +0,0 @@
-
-header {* Syntactic classes *}
-
-theory Product imports Main begin
-
-text {*
-  \medskip\noindent There is still a feature of Isabelle's type system
-  left that we have not yet discussed.  When declaring polymorphic
-  constants @{text "c \<Colon> \<sigma>"}, the type variables occurring in @{text \<sigma>}
-  may be constrained by type classes (or even general sorts) in an
-  arbitrary way.  Note that by default, in Isabelle/HOL the
-  declaration @{text "\<odot> \<Colon> 'a \<Rightarrow> 'a \<Rightarrow> 'a"} is actually an abbreviation
-  for @{text "\<odot> \<Colon> 'a\<Colon>type \<Rightarrow> 'a \<Rightarrow> 'a"} Since class @{text type} is the
-  universal class of HOL, this is not really a constraint at all.
-
- The @{text product} class below provides a less degenerate example of
- syntactic type classes.
-*}
-
-axclass
-  product \<subseteq> type
-consts
-  product :: "'a\<Colon>product \<Rightarrow> 'a \<Rightarrow> 'a"    (infixl "\<odot>" 70)
-
-text {*
-  Here class @{text product} is defined as subclass of @{text type}
-  without any additional axioms.  This effects in logical equivalence
-  of @{text product} and @{text type}, as is reflected by the trivial
-  introduction rule generated for this definition.
-
-  \medskip So what is the difference of declaring @{text "\<odot> \<Colon>
-  'a\<Colon>product \<Rightarrow> 'a \<Rightarrow> 'a"} vs.\ declaring @{text "\<odot> \<Colon> 'a\<Colon>type \<Rightarrow> 'a \<Rightarrow>
-  'a"} anyway?  In this particular case where @{text "product \<equiv>
-  type"}, it should be obvious that both declarations are the same
-  from the logic's point of view.  It even makes the most sense to
-  remove sort constraints from constant declarations, as far as the
-  purely logical meaning is concerned \cite{Wenzel:1997:TPHOL}.
-
-  On the other hand there are syntactic differences, of course.
- Constants @{text \<odot>} on some type @{text \<tau>} are rejected by the
- type-checker, unless the arity @{text "\<tau> \<Colon> product"} is part of the
- type signature.  In our example, this arity may be always added when
- required by means of an \isakeyword{instance} with the default proof
- (double-dot).
-
-  \medskip Thus, we may observe the following discipline of using
-  syntactic classes.  Overloaded polymorphic constants have their type
-  arguments restricted to an associated (logically trivial) class
-  @{text c}.  Only immediately before \emph{specifying} these
-  constants on a certain type @{text \<tau>} do we instantiate @{text "\<tau> \<Colon>
-  c"}.
-
-  This is done for class @{text product} and type @{typ bool} as
-  follows.
-*}
-
-instance bool :: product ..
-defs (overloaded)
-  product_bool_def: "x \<odot> y \<equiv> x \<and> y"
-
-text {*
- The definition @{text prod_bool_def} becomes syntactically
- well-formed only after the arity @{text "bool \<Colon> product"} is made
- known to the type checker.
-
- \medskip It is very important to see that above \isakeyword{defs} are
- not directly connected with \isakeyword{instance} at all!  We were
- just following our convention to specify @{text \<odot>} on @{typ bool}
- after having instantiated @{text "bool \<Colon> product"}.  Isabelle does
- not require these definitions, which is in contrast to programming
- languages like Haskell \cite{haskell-report}.
-
- \medskip While Isabelle type classes and those of Haskell are almost
- the same as far as type-checking and type inference are concerned,
- there are important semantic differences.  Haskell classes require
- their instances to \emph{provide operations} of certain \emph{names}.
- Therefore, its \texttt{instance} has a \texttt{where} part that tells
- the system what these ``member functions'' should be.
-
- This style of \texttt{instance} would not make much sense in
- Isabelle's meta-logic, because there is no internal notion of
- ``providing operations'' or even ``names of functions''.
-*}
-
-end