src/HOL/Cardinals/Wellorder_Relation_LFP.thy
changeset 54481 5c9819d7713b
parent 54480 57e781b711b5
child 54482 a2874c8b3558
--- a/src/HOL/Cardinals/Wellorder_Relation_LFP.thy	Mon Nov 18 18:04:45 2013 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,631 +0,0 @@
-(*  Title:      HOL/Cardinals/Wellorder_Relation_LFP.thy
-    Author:     Andrei Popescu, TU Muenchen
-    Copyright   2012
-
-Well-order relations (LFP).
-*)
-
-header {* Well-Order Relations (LFP) *}
-
-theory Wellorder_Relation_LFP
-imports Wellfounded_More_LFP
-begin
-
-
-text{* In this section, we develop basic concepts and results pertaining
-to well-order relations.  Note that we consider well-order relations
-as {\em non-strict relations},
-i.e., as containing the diagonals of their fields. *}
-
-
-locale wo_rel = rel + assumes WELL: "Well_order r"
-begin
-
-text{* The following context encompasses all this section. In other words,
-for the whole section, we consider a fixed well-order relation @{term "r"}. *}
-
-(* context wo_rel  *)
-
-
-subsection {* Auxiliaries *}
-
-
-lemma REFL: "Refl r"
-using WELL order_on_defs[of _ r] by auto
-
-
-lemma TRANS: "trans r"
-using WELL order_on_defs[of _ r] by auto
-
-
-lemma ANTISYM: "antisym r"
-using WELL order_on_defs[of _ r] by auto
-
-
-lemma TOTAL: "Total r"
-using WELL order_on_defs[of _ r] by auto
-
-
-lemma TOTALS: "\<forall>a \<in> Field r. \<forall>b \<in> Field r. (a,b) \<in> r \<or> (b,a) \<in> r"
-using REFL TOTAL refl_on_def[of _ r] total_on_def[of _ r] by force
-
-
-lemma LIN: "Linear_order r"
-using WELL well_order_on_def[of _ r] by auto
-
-
-lemma WF: "wf (r - Id)"
-using WELL well_order_on_def[of _ r] by auto
-
-
-lemma cases_Total:
-"\<And> phi a b. \<lbrakk>{a,b} <= Field r; ((a,b) \<in> r \<Longrightarrow> phi a b); ((b,a) \<in> r \<Longrightarrow> phi a b)\<rbrakk>
-             \<Longrightarrow> phi a b"
-using TOTALS by auto
-
-
-lemma cases_Total3:
-"\<And> phi a b. \<lbrakk>{a,b} \<le> Field r; ((a,b) \<in> r - Id \<or> (b,a) \<in> r - Id \<Longrightarrow> phi a b);
-              (a = b \<Longrightarrow> phi a b)\<rbrakk>  \<Longrightarrow> phi a b"
-using TOTALS by auto
-
-
-subsection {* Well-founded induction and recursion adapted to non-strict well-order relations  *}
-
-
-text{* Here we provide induction and recursion principles specific to {\em non-strict}
-well-order relations.
-Although minor variations of those for well-founded relations, they will be useful
-for doing away with the tediousness of
-having to take out the diagonal each time in order to switch to a well-founded relation. *}
-
-
-lemma well_order_induct:
-assumes IND: "\<And>x. \<forall>y. y \<noteq> x \<and> (y, x) \<in> r \<longrightarrow> P y \<Longrightarrow> P x"
-shows "P a"
-proof-
-  have "\<And>x. \<forall>y. (y, x) \<in> r - Id \<longrightarrow> P y \<Longrightarrow> P x"
-  using IND by blast
-  thus "P a" using WF wf_induct[of "r - Id" P a] by blast
-qed
-
-
-definition
-worec :: "(('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
-where
-"worec F \<equiv> wfrec (r - Id) F"
-
-
-definition
-adm_wo :: "(('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> bool"
-where
-"adm_wo H \<equiv> \<forall>f g x. (\<forall>y \<in> underS x. f y = g y) \<longrightarrow> H f x = H g x"
-
-
-lemma worec_fixpoint:
-assumes ADM: "adm_wo H"
-shows "worec H = H (worec H)"
-proof-
-  let ?rS = "r - Id"
-  have "adm_wf (r - Id) H"
-  unfolding adm_wf_def
-  using ADM adm_wo_def[of H] underS_def by auto
-  hence "wfrec ?rS H = H (wfrec ?rS H)"
-  using WF wfrec_fixpoint[of ?rS H] by simp
-  thus ?thesis unfolding worec_def .
-qed
-
-
-subsection {* The notions of maximum, minimum, supremum, successor and order filter  *}
-
-
-text{*
-We define the successor {\em of a set}, and not of an element (the latter is of course
-a particular case).  Also, we define the maximum {\em of two elements}, @{text "max2"},
-and the minimum {\em of a set}, @{text "minim"} -- we chose these variants since we
-consider them the most useful for well-orders.  The minimum is defined in terms of the
-auxiliary relational operator @{text "isMinim"}.  Then, supremum and successor are
-defined in terms of minimum as expected.
-The minimum is only meaningful for non-empty sets, and the successor is only
-meaningful for sets for which strict upper bounds exist.
-Order filters for well-orders are also known as ``initial segments". *}
-
-
-definition max2 :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
-where "max2 a b \<equiv> if (a,b) \<in> r then b else a"
-
-
-definition isMinim :: "'a set \<Rightarrow> 'a \<Rightarrow> bool"
-where "isMinim A b \<equiv> b \<in> A \<and> (\<forall>a \<in> A. (b,a) \<in> r)"
-
-definition minim :: "'a set \<Rightarrow> 'a"
-where "minim A \<equiv> THE b. isMinim A b"
-
-
-definition supr :: "'a set \<Rightarrow> 'a"
-where "supr A \<equiv> minim (Above A)"
-
-definition suc :: "'a set \<Rightarrow> 'a"
-where "suc A \<equiv> minim (AboveS A)"
-
-definition ofilter :: "'a set \<Rightarrow> bool"
-where
-"ofilter A \<equiv> (A \<le> Field r) \<and> (\<forall>a \<in> A. under a \<le> A)"
-
-
-subsubsection {* Properties of max2 *}
-
-
-lemma max2_greater_among:
-assumes "a \<in> Field r" and "b \<in> Field r"
-shows "(a, max2 a b) \<in> r \<and> (b, max2 a b) \<in> r \<and> max2 a b \<in> {a,b}"
-proof-
-  {assume "(a,b) \<in> r"
-   hence ?thesis using max2_def assms REFL refl_on_def
-   by (auto simp add: refl_on_def)
-  }
-  moreover
-  {assume "a = b"
-   hence "(a,b) \<in> r" using REFL  assms
-   by (auto simp add: refl_on_def)
-  }
-  moreover
-  {assume *: "a \<noteq> b \<and> (b,a) \<in> r"
-   hence "(a,b) \<notin> r" using ANTISYM
-   by (auto simp add: antisym_def)
-   hence ?thesis using * max2_def assms REFL refl_on_def
-   by (auto simp add: refl_on_def)
-  }
-  ultimately show ?thesis using assms TOTAL
-  total_on_def[of "Field r" r] by blast
-qed
-
-
-lemma max2_greater:
-assumes "a \<in> Field r" and "b \<in> Field r"
-shows "(a, max2 a b) \<in> r \<and> (b, max2 a b) \<in> r"
-using assms by (auto simp add: max2_greater_among)
-
-
-lemma max2_among:
-assumes "a \<in> Field r" and "b \<in> Field r"
-shows "max2 a b \<in> {a, b}"
-using assms max2_greater_among[of a b] by simp
-
-
-lemma max2_equals1:
-assumes "a \<in> Field r" and "b \<in> Field r"
-shows "(max2 a b = a) = ((b,a) \<in> r)"
-using assms ANTISYM unfolding antisym_def using TOTALS
-by(auto simp add: max2_def max2_among)
-
-
-lemma max2_equals2:
-assumes "a \<in> Field r" and "b \<in> Field r"
-shows "(max2 a b = b) = ((a,b) \<in> r)"
-using assms ANTISYM unfolding antisym_def using TOTALS
-unfolding max2_def by auto
-
-
-subsubsection {* Existence and uniqueness for isMinim and well-definedness of minim *}
-
-
-lemma isMinim_unique:
-assumes MINIM: "isMinim B a" and MINIM': "isMinim B a'"
-shows "a = a'"
-proof-
-  {have "a \<in> B"
-   using MINIM isMinim_def by simp
-   hence "(a',a) \<in> r"
-   using MINIM' isMinim_def by simp
-  }
-  moreover
-  {have "a' \<in> B"
-   using MINIM' isMinim_def by simp
-   hence "(a,a') \<in> r"
-   using MINIM isMinim_def by simp
-  }
-  ultimately
-  show ?thesis using ANTISYM antisym_def[of r] by blast
-qed
-
-
-lemma Well_order_isMinim_exists:
-assumes SUB: "B \<le> Field r" and NE: "B \<noteq> {}"
-shows "\<exists>b. isMinim B b"
-proof-
-  from spec[OF WF[unfolded wf_eq_minimal[of "r - Id"]], of B] NE obtain b where
-  *: "b \<in> B \<and> (\<forall>b'. b' \<noteq> b \<and> (b',b) \<in> r \<longrightarrow> b' \<notin> B)" by auto
-  show ?thesis
-  proof(simp add: isMinim_def, rule exI[of _ b], auto)
-    show "b \<in> B" using * by simp
-  next
-    fix b' assume As: "b' \<in> B"
-    hence **: "b \<in> Field r \<and> b' \<in> Field r" using As SUB * by auto
-    (*  *)
-    from As  * have "b' = b \<or> (b',b) \<notin> r" by auto
-    moreover
-    {assume "b' = b"
-     hence "(b,b') \<in> r"
-     using ** REFL by (auto simp add: refl_on_def)
-    }
-    moreover
-    {assume "b' \<noteq> b \<and> (b',b) \<notin> r"
-     hence "(b,b') \<in> r"
-     using ** TOTAL by (auto simp add: total_on_def)
-    }
-    ultimately show "(b,b') \<in> r" by blast
-  qed
-qed
-
-
-lemma minim_isMinim:
-assumes SUB: "B \<le> Field r" and NE: "B \<noteq> {}"
-shows "isMinim B (minim B)"
-proof-
-  let ?phi = "(\<lambda> b. isMinim B b)"
-  from assms Well_order_isMinim_exists
-  obtain b where *: "?phi b" by blast
-  moreover
-  have "\<And> b'. ?phi b' \<Longrightarrow> b' = b"
-  using isMinim_unique * by auto
-  ultimately show ?thesis
-  unfolding minim_def using theI[of ?phi b] by blast
-qed
-
-
-subsubsection{* Properties of minim *}
-
-
-lemma minim_in:
-assumes "B \<le> Field r" and "B \<noteq> {}"
-shows "minim B \<in> B"
-proof-
-  from minim_isMinim[of B] assms
-  have "isMinim B (minim B)" by simp
-  thus ?thesis by (simp add: isMinim_def)
-qed
-
-
-lemma minim_inField:
-assumes "B \<le> Field r" and "B \<noteq> {}"
-shows "minim B \<in> Field r"
-proof-
-  have "minim B \<in> B" using assms by (simp add: minim_in)
-  thus ?thesis using assms by blast
-qed
-
-
-lemma minim_least:
-assumes  SUB: "B \<le> Field r" and IN: "b \<in> B"
-shows "(minim B, b) \<in> r"
-proof-
-  from minim_isMinim[of B] assms
-  have "isMinim B (minim B)" by auto
-  thus ?thesis by (auto simp add: isMinim_def IN)
-qed
-
-
-lemma equals_minim:
-assumes SUB: "B \<le> Field r" and IN: "a \<in> B" and
-        LEAST: "\<And> b. b \<in> B \<Longrightarrow> (a,b) \<in> r"
-shows "a = minim B"
-proof-
-  from minim_isMinim[of B] assms
-  have "isMinim B (minim B)" by auto
-  moreover have "isMinim B a" using IN LEAST isMinim_def by auto
-  ultimately show ?thesis
-  using isMinim_unique by auto
-qed
-
-
-subsubsection{* Properties of successor *}
-
-
-lemma suc_AboveS:
-assumes SUB: "B \<le> Field r" and ABOVES: "AboveS B \<noteq> {}"
-shows "suc B \<in> AboveS B"
-proof(unfold suc_def)
-  have "AboveS B \<le> Field r"
-  using AboveS_Field by auto
-  thus "minim (AboveS B) \<in> AboveS B"
-  using assms by (simp add: minim_in)
-qed
-
-
-lemma suc_greater:
-assumes SUB: "B \<le> Field r" and ABOVES: "AboveS B \<noteq> {}" and
-        IN: "b \<in> B"
-shows "suc B \<noteq> b \<and> (b,suc B) \<in> r"
-proof-
-  from assms suc_AboveS
-  have "suc B \<in> AboveS B" by simp
-  with IN AboveS_def show ?thesis by simp
-qed
-
-
-lemma suc_least_AboveS:
-assumes ABOVES: "a \<in> AboveS B"
-shows "(suc B,a) \<in> r"
-proof(unfold suc_def)
-  have "AboveS B \<le> Field r"
-  using AboveS_Field by auto
-  thus "(minim (AboveS B),a) \<in> r"
-  using assms minim_least by simp
-qed
-
-
-lemma suc_inField:
-assumes "B \<le> Field r" and "AboveS B \<noteq> {}"
-shows "suc B \<in> Field r"
-proof-
-  have "suc B \<in> AboveS B" using suc_AboveS assms by simp
-  thus ?thesis
-  using assms AboveS_Field by auto
-qed
-
-
-lemma equals_suc_AboveS:
-assumes SUB: "B \<le> Field r" and ABV: "a \<in> AboveS B" and
-        MINIM: "\<And> a'. a' \<in> AboveS B \<Longrightarrow> (a,a') \<in> r"
-shows "a = suc B"
-proof(unfold suc_def)
-  have "AboveS B \<le> Field r"
-  using AboveS_Field[of B] by auto
-  thus "a = minim (AboveS B)"
-  using assms equals_minim
-  by simp
-qed
-
-
-lemma suc_underS:
-assumes IN: "a \<in> Field r"
-shows "a = suc (underS a)"
-proof-
-  have "underS a \<le> Field r"
-  using underS_Field by auto
-  moreover
-  have "a \<in> AboveS (underS a)"
-  using in_AboveS_underS IN by auto
-  moreover
-  have "\<forall>a' \<in> AboveS (underS a). (a,a') \<in> r"
-  proof(clarify)
-    fix a'
-    assume *: "a' \<in> AboveS (underS a)"
-    hence **: "a' \<in> Field r"
-    using AboveS_Field by auto
-    {assume "(a,a') \<notin> r"
-     hence "a' = a \<or> (a',a) \<in> r"
-     using TOTAL IN ** by (auto simp add: total_on_def)
-     moreover
-     {assume "a' = a"
-      hence "(a,a') \<in> r"
-      using REFL IN ** by (auto simp add: refl_on_def)
-     }
-     moreover
-     {assume "a' \<noteq> a \<and> (a',a) \<in> r"
-      hence "a' \<in> underS a"
-      unfolding underS_def by simp
-      hence "a' \<notin> AboveS (underS a)"
-      using AboveS_disjoint by blast
-      with * have False by simp
-     }
-     ultimately have "(a,a') \<in> r" by blast
-    }
-    thus  "(a, a') \<in> r" by blast
-  qed
-  ultimately show ?thesis
-  using equals_suc_AboveS by auto
-qed
-
-
-subsubsection {* Properties of order filters *}
-
-
-lemma under_ofilter:
-"ofilter (under a)"
-proof(unfold ofilter_def under_def, auto simp add: Field_def)
-  fix aa x
-  assume "(aa,a) \<in> r" "(x,aa) \<in> r"
-  thus "(x,a) \<in> r"
-  using TRANS trans_def[of r] by blast
-qed
-
-
-lemma underS_ofilter:
-"ofilter (underS a)"
-proof(unfold ofilter_def underS_def under_def, auto simp add: Field_def)
-  fix aa assume "(a, aa) \<in> r" "(aa, a) \<in> r" and DIFF: "aa \<noteq> a"
-  thus False
-  using ANTISYM antisym_def[of r] by blast
-next
-  fix aa x
-  assume "(aa,a) \<in> r" "aa \<noteq> a" "(x,aa) \<in> r"
-  thus "(x,a) \<in> r"
-  using TRANS trans_def[of r] by blast
-qed
-
-
-lemma Field_ofilter:
-"ofilter (Field r)"
-by(unfold ofilter_def under_def, auto simp add: Field_def)
-
-
-lemma ofilter_underS_Field:
-"ofilter A = ((\<exists>a \<in> Field r. A = underS a) \<or> (A = Field r))"
-proof
-  assume "(\<exists>a\<in>Field r. A = underS a) \<or> A = Field r"
-  thus "ofilter A"
-  by (auto simp: underS_ofilter Field_ofilter)
-next
-  assume *: "ofilter A"
-  let ?One = "(\<exists>a\<in>Field r. A = underS a)"
-  let ?Two = "(A = Field r)"
-  show "?One \<or> ?Two"
-  proof(cases ?Two, simp)
-    let ?B = "(Field r) - A"
-    let ?a = "minim ?B"
-    assume "A \<noteq> Field r"
-    moreover have "A \<le> Field r" using * ofilter_def by simp
-    ultimately have 1: "?B \<noteq> {}" by blast
-    hence 2: "?a \<in> Field r" using minim_inField[of ?B] by blast
-    have 3: "?a \<in> ?B" using minim_in[of ?B] 1 by blast
-    hence 4: "?a \<notin> A" by blast
-    have 5: "A \<le> Field r" using * ofilter_def[of A] by auto
-    (*  *)
-    moreover
-    have "A = underS ?a"
-    proof
-      show "A \<le> underS ?a"
-      proof(unfold underS_def, auto simp add: 4)
-        fix x assume **: "x \<in> A"
-        hence 11: "x \<in> Field r" using 5 by auto
-        have 12: "x \<noteq> ?a" using 4 ** by auto
-        have 13: "under x \<le> A" using * ofilter_def ** by auto
-        {assume "(x,?a) \<notin> r"
-         hence "(?a,x) \<in> r"
-         using TOTAL total_on_def[of "Field r" r]
-               2 4 11 12 by auto
-         hence "?a \<in> under x" using under_def by auto
-         hence "?a \<in> A" using ** 13 by blast
-         with 4 have False by simp
-        }
-        thus "(x,?a) \<in> r" by blast
-      qed
-    next
-      show "underS ?a \<le> A"
-      proof(unfold underS_def, auto)
-        fix x
-        assume **: "x \<noteq> ?a" and ***: "(x,?a) \<in> r"
-        hence 11: "x \<in> Field r" using Field_def by fastforce
-         {assume "x \<notin> A"
-          hence "x \<in> ?B" using 11 by auto
-          hence "(?a,x) \<in> r" using 3 minim_least[of ?B x] by blast
-          hence False
-          using ANTISYM antisym_def[of r] ** *** by auto
-         }
-        thus "x \<in> A" by blast
-      qed
-    qed
-    ultimately have ?One using 2 by blast
-    thus ?thesis by simp
-  qed
-qed
-
-
-lemma ofilter_UNION:
-"(\<And> i. i \<in> I \<Longrightarrow> ofilter(A i)) \<Longrightarrow> ofilter (\<Union> i \<in> I. A i)"
-unfolding ofilter_def by blast
-
-
-lemma ofilter_under_UNION:
-assumes "ofilter A"
-shows "A = (\<Union> a \<in> A. under a)"
-proof
-  have "\<forall>a \<in> A. under a \<le> A"
-  using assms ofilter_def by auto
-  thus "(\<Union> a \<in> A. under a) \<le> A" by blast
-next
-  have "\<forall>a \<in> A. a \<in> under a"
-  using REFL Refl_under_in assms ofilter_def by blast
-  thus "A \<le> (\<Union> a \<in> A. under a)" by blast
-qed
-
-
-subsubsection{* Other properties *}
-
-
-lemma ofilter_linord:
-assumes OF1: "ofilter A" and OF2: "ofilter B"
-shows "A \<le> B \<or> B \<le> A"
-proof(cases "A = Field r")
-  assume Case1: "A = Field r"
-  hence "B \<le> A" using OF2 ofilter_def by auto
-  thus ?thesis by simp
-next
-  assume Case2: "A \<noteq> Field r"
-  with ofilter_underS_Field OF1 obtain a where
-  1: "a \<in> Field r \<and> A = underS a" by auto
-  show ?thesis
-  proof(cases "B = Field r")
-    assume Case21: "B = Field r"
-    hence "A \<le> B" using OF1 ofilter_def by auto
-    thus ?thesis by simp
-  next
-    assume Case22: "B \<noteq> Field r"
-    with ofilter_underS_Field OF2 obtain b where
-    2: "b \<in> Field r \<and> B = underS b" by auto
-    have "a = b \<or> (a,b) \<in> r \<or> (b,a) \<in> r"
-    using 1 2 TOTAL total_on_def[of _ r] by auto
-    moreover
-    {assume "a = b" with 1 2 have ?thesis by auto
-    }
-    moreover
-    {assume "(a,b) \<in> r"
-     with underS_incr TRANS ANTISYM 1 2
-     have "A \<le> B" by auto
-     hence ?thesis by auto
-    }
-    moreover
-     {assume "(b,a) \<in> r"
-     with underS_incr TRANS ANTISYM 1 2
-     have "B \<le> A" by auto
-     hence ?thesis by auto
-    }
-    ultimately show ?thesis by blast
-  qed
-qed
-
-
-lemma ofilter_AboveS_Field:
-assumes "ofilter A"
-shows "A \<union> (AboveS A) = Field r"
-proof
-  show "A \<union> (AboveS A) \<le> Field r"
-  using assms ofilter_def AboveS_Field by auto
-next
-  {fix x assume *: "x \<in> Field r" and **: "x \<notin> A"
-   {fix y assume ***: "y \<in> A"
-    with ** have 1: "y \<noteq> x" by auto
-    {assume "(y,x) \<notin> r"
-     moreover
-     have "y \<in> Field r" using assms ofilter_def *** by auto
-     ultimately have "(x,y) \<in> r"
-     using 1 * TOTAL total_on_def[of _ r] by auto
-     with *** assms ofilter_def under_def have "x \<in> A" by auto
-     with ** have False by contradiction
-    }
-    hence "(y,x) \<in> r" by blast
-    with 1 have "y \<noteq> x \<and> (y,x) \<in> r" by auto
-   }
-   with * have "x \<in> AboveS A" unfolding AboveS_def by auto
-  }
-  thus "Field r \<le> A \<union> (AboveS A)" by blast
-qed
-
-
-lemma suc_ofilter_in:
-assumes OF: "ofilter A" and ABOVE_NE: "AboveS A \<noteq> {}" and
-        REL: "(b,suc A) \<in> r" and DIFF: "b \<noteq> suc A"
-shows "b \<in> A"
-proof-
-  have *: "suc A \<in> Field r \<and> b \<in> Field r"
-  using WELL REL well_order_on_domain by auto
-  {assume **: "b \<notin> A"
-   hence "b \<in> AboveS A"
-   using OF * ofilter_AboveS_Field by auto
-   hence "(suc A, b) \<in> r"
-   using suc_least_AboveS by auto
-   hence False using REL DIFF ANTISYM *
-   by (auto simp add: antisym_def)
-  }
-  thus ?thesis by blast
-qed
-
-
-
-end (* context wo_rel *)
-
-
-
-end