src/HOL/Number_Theory/Euclidean_Algorithm.thy
changeset 64784 5cb5e7ecb284
parent 64592 7759f1766189
child 64785 ae0bbc8e45ad
--- a/src/HOL/Number_Theory/Euclidean_Algorithm.thy	Wed Jan 04 22:57:39 2017 +0100
+++ b/src/HOL/Number_Theory/Euclidean_Algorithm.thy	Wed Jan 04 21:28:28 2017 +0100
@@ -1,133 +1,17 @@
-(* Author: Manuel Eberl *)
+(*  Title:      HOL/Number_Theory/Euclidean_Algorithm.thy
+    Author:     Manuel Eberl, TU Muenchen
+*)
 
-section \<open>Abstract euclidean algorithm\<close>
+section \<open>Abstract euclidean algorithm in euclidean (semi)rings\<close>
 
 theory Euclidean_Algorithm
-imports "~~/src/HOL/GCD" Factorial_Ring
-begin
-
-text \<open>
-  A Euclidean semiring is a semiring upon which the Euclidean algorithm can be
-  implemented. It must provide:
-  \begin{itemize}
-  \item division with remainder
-  \item a size function such that @{term "size (a mod b) < size b"} 
-        for any @{term "b \<noteq> 0"}
-  \end{itemize}
-  The existence of these functions makes it possible to derive gcd and lcm functions 
-  for any Euclidean semiring.
-\<close> 
-class euclidean_semiring = semidom_modulo + normalization_semidom + 
-  fixes euclidean_size :: "'a \<Rightarrow> nat"
-  assumes size_0 [simp]: "euclidean_size 0 = 0"
-  assumes mod_size_less: 
-    "b \<noteq> 0 \<Longrightarrow> euclidean_size (a mod b) < euclidean_size b"
-  assumes size_mult_mono:
-    "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (a * b)"
+  imports "~~/src/HOL/GCD"
+    "~~/src/HOL/Number_Theory/Factorial_Ring"
+    "~~/src/HOL/Number_Theory/Euclidean_Division"
 begin
 
-lemma euclidean_size_normalize [simp]:
-  "euclidean_size (normalize a) = euclidean_size a"
-proof (cases "a = 0")
-  case True
-  then show ?thesis
-    by simp
-next
-  case [simp]: False
-  have "euclidean_size (normalize a) \<le> euclidean_size (normalize a * unit_factor a)"
-    by (rule size_mult_mono) simp
-  moreover have "euclidean_size a \<le> euclidean_size (a * (1 div unit_factor a))"
-    by (rule size_mult_mono) simp
-  ultimately show ?thesis
-    by simp
-qed
-
-lemma euclidean_division:
-  fixes a :: 'a and b :: 'a
-  assumes "b \<noteq> 0"
-  obtains s and t where "a = s * b + t" 
-    and "euclidean_size t < euclidean_size b"
-proof -
-  from div_mult_mod_eq [of a b] 
-     have "a = a div b * b + a mod b" by simp
-  with that and assms show ?thesis by (auto simp add: mod_size_less)
-qed
-
-lemma dvd_euclidean_size_eq_imp_dvd:
-  assumes "a \<noteq> 0" and b_dvd_a: "b dvd a" and size_eq: "euclidean_size a = euclidean_size b"
-  shows "a dvd b"
-proof (rule ccontr)
-  assume "\<not> a dvd b"
-  hence "b mod a \<noteq> 0" using mod_0_imp_dvd[of b a] by blast
-  then have "b mod a \<noteq> 0" by (simp add: mod_eq_0_iff_dvd)
-  from b_dvd_a have b_dvd_mod: "b dvd b mod a" by (simp add: dvd_mod_iff)
-  from b_dvd_mod obtain c where "b mod a = b * c" unfolding dvd_def by blast
-    with \<open>b mod a \<noteq> 0\<close> have "c \<noteq> 0" by auto
-  with \<open>b mod a = b * c\<close> have "euclidean_size (b mod a) \<ge> euclidean_size b"
-      using size_mult_mono by force
-  moreover from \<open>\<not> a dvd b\<close> and \<open>a \<noteq> 0\<close>
-  have "euclidean_size (b mod a) < euclidean_size a"
-      using mod_size_less by blast
-  ultimately show False using size_eq by simp
-qed
-
-lemma size_mult_mono': "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (b * a)"
-  by (subst mult.commute) (rule size_mult_mono)
-
-lemma euclidean_size_times_unit:
-  assumes "is_unit a"
-  shows   "euclidean_size (a * b) = euclidean_size b"
-proof (rule antisym)
-  from assms have [simp]: "a \<noteq> 0" by auto
-  thus "euclidean_size (a * b) \<ge> euclidean_size b" by (rule size_mult_mono')
-  from assms have "is_unit (1 div a)" by simp
-  hence "1 div a \<noteq> 0" by (intro notI) simp_all
-  hence "euclidean_size (a * b) \<le> euclidean_size ((1 div a) * (a * b))"
-    by (rule size_mult_mono')
-  also from assms have "(1 div a) * (a * b) = b"
-    by (simp add: algebra_simps unit_div_mult_swap)
-  finally show "euclidean_size (a * b) \<le> euclidean_size b" .
-qed
-
-lemma euclidean_size_unit: "is_unit a \<Longrightarrow> euclidean_size a = euclidean_size 1"
-  using euclidean_size_times_unit[of a 1] by simp
-
-lemma unit_iff_euclidean_size: 
-  "is_unit a \<longleftrightarrow> euclidean_size a = euclidean_size 1 \<and> a \<noteq> 0"
-proof safe
-  assume A: "a \<noteq> 0" and B: "euclidean_size a = euclidean_size 1"
-  show "is_unit a" by (rule dvd_euclidean_size_eq_imp_dvd[OF A _ B]) simp_all
-qed (auto intro: euclidean_size_unit)
-
-lemma euclidean_size_times_nonunit:
-  assumes "a \<noteq> 0" "b \<noteq> 0" "\<not>is_unit a"
-  shows   "euclidean_size b < euclidean_size (a * b)"
-proof (rule ccontr)
-  assume "\<not>euclidean_size b < euclidean_size (a * b)"
-  with size_mult_mono'[OF assms(1), of b] 
-    have eq: "euclidean_size (a * b) = euclidean_size b" by simp
-  have "a * b dvd b"
-    by (rule dvd_euclidean_size_eq_imp_dvd[OF _ _ eq]) (insert assms, simp_all)
-  hence "a * b dvd 1 * b" by simp
-  with \<open>b \<noteq> 0\<close> have "is_unit a" by (subst (asm) dvd_times_right_cancel_iff)
-  with assms(3) show False by contradiction
-qed
-
-lemma dvd_imp_size_le:
-  assumes "a dvd b" "b \<noteq> 0" 
-  shows   "euclidean_size a \<le> euclidean_size b"
-  using assms by (auto elim!: dvdE simp: size_mult_mono)
-
-lemma dvd_proper_imp_size_less:
-  assumes "a dvd b" "\<not>b dvd a" "b \<noteq> 0" 
-  shows   "euclidean_size a < euclidean_size b"
-proof -
-  from assms(1) obtain c where "b = a * c" by (erule dvdE)
-  hence z: "b = c * a" by (simp add: mult.commute)
-  from z assms have "\<not>is_unit c" by (auto simp: mult.commute mult_unit_dvd_iff)
-  with z assms show ?thesis
-    by (auto intro!: euclidean_size_times_nonunit simp: )
-qed
+context euclidean_semiring
+begin
 
 function gcd_eucl :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
 where
@@ -432,7 +316,7 @@
   
 end
 
-class euclidean_ring = euclidean_semiring + idom
+context euclidean_ring
 begin
 
 function euclid_ext_aux :: "'a \<Rightarrow> _" where
@@ -680,27 +564,6 @@
 
 subsection \<open>Typical instances\<close>
 
-instantiation nat :: euclidean_semiring
-begin
-
-definition [simp]:
-  "euclidean_size_nat = (id :: nat \<Rightarrow> nat)"
-
-instance by standard simp_all
-
-end
-
-
-instantiation int :: euclidean_ring
-begin
-
-definition [simp]:
-  "euclidean_size_int = (nat \<circ> abs :: int \<Rightarrow> nat)"
-
-instance by standard (auto simp add: abs_mult nat_mult_distrib split: abs_split)
-
-end
-
 instance nat :: euclidean_semiring_gcd
 proof
   show [simp]: "gcd = (gcd_eucl :: nat \<Rightarrow> _)" "Lcm = (Lcm_eucl :: nat set \<Rightarrow> _)"