src/CTT/ex/Elimination.thy
changeset 19761 5cd82054c2c6
child 35762 af3ff2ba4c54
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/CTT/ex/Elimination.thy	Fri Jun 02 18:15:38 2006 +0200
@@ -0,0 +1,194 @@
+(*  Title:      CTT/ex/Elimination.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1991  University of Cambridge
+
+Some examples taken from P. Martin-L\"of, Intuitionistic type theory
+        (Bibliopolis, 1984).
+*)
+
+header "Examples with elimination rules"
+
+theory Elimination
+imports CTT
+begin
+
+text "This finds the functions fst and snd!"
+
+lemma [folded basic_defs]: "A type ==> ?a : (A*A) --> A"
+apply (tactic {* pc_tac [] 1 *})
+done
+
+lemma [folded basic_defs]: "A type ==> ?a : (A*A) --> A"
+apply (tactic {* pc_tac [] 1 *})
+back
+done
+
+text "Double negation of the Excluded Middle"
+lemma "A type ==> ?a : ((A + (A-->F)) --> F) --> F"
+apply (tactic "intr_tac []")
+apply (rule ProdE)
+apply assumption
+apply (tactic "pc_tac [] 1")
+done
+
+lemma "[| A type;  B type |] ==> ?a : (A*B) --> (B*A)"
+apply (tactic "pc_tac [] 1")
+done
+(*The sequent version (ITT) could produce an interesting alternative
+  by backtracking.  No longer.*)
+
+text "Binary sums and products"
+lemma "[| A type; B type; C type |] ==> ?a : (A+B --> C) --> (A-->C) * (B-->C)"
+apply (tactic "pc_tac [] 1")
+done
+
+(*A distributive law*)
+lemma "[| A type;  B type;  C type |] ==> ?a : A * (B+C)  -->  (A*B + A*C)"
+apply (tactic "pc_tac [] 1")
+done
+
+(*more general version, same proof*)
+lemma
+  assumes "A type"
+    and "!!x. x:A ==> B(x) type"
+    and "!!x. x:A ==> C(x) type"
+  shows "?a : (SUM x:A. B(x) + C(x)) --> (SUM x:A. B(x)) + (SUM x:A. C(x))"
+apply (tactic {* pc_tac (thms "prems") 1 *})
+done
+
+text "Construction of the currying functional"
+lemma "[| A type;  B type;  C type |] ==> ?a : (A*B --> C) --> (A--> (B-->C))"
+apply (tactic "pc_tac [] 1")
+done
+
+(*more general goal with same proof*)
+lemma
+  assumes "A type"
+    and "!!x. x:A ==> B(x) type"
+    and "!!z. z: (SUM x:A. B(x)) ==> C(z) type"
+  shows "?a : PROD f: (PROD z : (SUM x:A . B(x)) . C(z)).
+                      (PROD x:A . PROD y:B(x) . C(<x,y>))"
+apply (tactic {* pc_tac (thms "prems") 1 *})
+done
+
+text "Martin-Lof (1984), page 48: axiom of sum-elimination (uncurry)"
+lemma "[| A type;  B type;  C type |] ==> ?a : (A --> (B-->C)) --> (A*B --> C)"
+apply (tactic "pc_tac [] 1")
+done
+
+(*more general goal with same proof*)
+lemma
+  assumes "A type"
+    and "!!x. x:A ==> B(x) type"
+    and "!!z. z: (SUM x:A . B(x)) ==> C(z) type"
+  shows "?a : (PROD x:A . PROD y:B(x) . C(<x,y>))
+        --> (PROD z : (SUM x:A . B(x)) . C(z))"
+apply (tactic {* pc_tac (thms "prems") 1 *})
+done
+
+text "Function application"
+lemma "[| A type;  B type |] ==> ?a : ((A --> B) * A) --> B"
+apply (tactic "pc_tac [] 1")
+done
+
+text "Basic test of quantifier reasoning"
+lemma
+  assumes "A type"
+    and "B type"
+    and "!!x y.[| x:A;  y:B |] ==> C(x,y) type"
+  shows
+    "?a :     (SUM y:B . PROD x:A . C(x,y))
+          --> (PROD x:A . SUM y:B . C(x,y))"
+apply (tactic {* pc_tac (thms "prems") 1 *})
+done
+
+text "Martin-Lof (1984) pages 36-7: the combinator S"
+lemma
+  assumes "A type"
+    and "!!x. x:A ==> B(x) type"
+    and "!!x y.[| x:A; y:B(x) |] ==> C(x,y) type"
+  shows "?a :    (PROD x:A. PROD y:B(x). C(x,y))
+             --> (PROD f: (PROD x:A. B(x)). PROD x:A. C(x, f`x))"
+apply (tactic {* pc_tac (thms "prems") 1 *})
+done
+
+text "Martin-Lof (1984) page 58: the axiom of disjunction elimination"
+lemma
+  assumes "A type"
+    and "B type"
+    and "!!z. z: A+B ==> C(z) type"
+  shows "?a : (PROD x:A. C(inl(x))) --> (PROD y:B. C(inr(y)))
+          --> (PROD z: A+B. C(z))"
+apply (tactic {* pc_tac (thms "prems") 1 *})
+done
+
+(*towards AXIOM OF CHOICE*)
+lemma [folded basic_defs]:
+  "[| A type; B type; C type |] ==> ?a : (A --> B*C) --> (A-->B) * (A-->C)"
+apply (tactic "pc_tac [] 1")
+done
+
+
+(*Martin-Lof (1984) page 50*)
+text "AXIOM OF CHOICE!  Delicate use of elimination rules"
+lemma
+  assumes "A type"
+    and "!!x. x:A ==> B(x) type"
+    and "!!x y.[| x:A;  y:B(x) |] ==> C(x,y) type"
+  shows "?a : PROD h: (PROD x:A. SUM y:B(x). C(x,y)).
+                         (SUM f: (PROD x:A. B(x)). PROD x:A. C(x, f`x))"
+apply (tactic {* intr_tac (thms "prems") *})
+apply (tactic "add_mp_tac 2")
+apply (tactic "add_mp_tac 1")
+apply (erule SumE_fst)
+apply (rule replace_type)
+apply (rule subst_eqtyparg)
+apply (rule comp_rls)
+apply (rule_tac [4] SumE_snd)
+apply (tactic {* typechk_tac (thm "SumE_fst" :: thms "prems") *})
+done
+
+text "Axiom of choice.  Proof without fst, snd.  Harder still!"
+lemma [folded basic_defs]:
+  assumes "A type"
+    and "!!x. x:A ==> B(x) type"
+    and "!!x y.[| x:A;  y:B(x) |] ==> C(x,y) type"
+  shows "?a : PROD h: (PROD x:A. SUM y:B(x). C(x,y)).
+                         (SUM f: (PROD x:A. B(x)). PROD x:A. C(x, f`x))"
+apply (tactic {* intr_tac (thms "prems") *})
+(*Must not use add_mp_tac as subst_prodE hides the construction.*)
+apply (rule ProdE [THEN SumE], assumption)
+apply (tactic "TRYALL assume_tac")
+apply (rule replace_type)
+apply (rule subst_eqtyparg)
+apply (rule comp_rls)
+apply (erule_tac [4] ProdE [THEN SumE])
+apply (tactic {* typechk_tac (thms "prems") *})
+apply (rule replace_type)
+apply (rule subst_eqtyparg)
+apply (rule comp_rls)
+apply (tactic {* typechk_tac (thms "prems") *})
+apply assumption
+done
+
+text "Example of sequent_style deduction"
+(*When splitting z:A*B, the assumption C(z) is affected;  ?a becomes
+    lam u. split(u,%v w.split(v,%x y.lam z. <x,<y,z>>) ` w)     *)
+lemma
+  assumes "A type"
+    and "B type"
+    and "!!z. z:A*B ==> C(z) type"
+  shows "?a : (SUM z:A*B. C(z)) --> (SUM u:A. SUM v:B. C(<u,v>))"
+apply (rule intr_rls)
+apply (tactic {* biresolve_tac safe_brls 2 *})
+(*Now must convert assumption C(z) into antecedent C(<kd,ke>) *)
+apply (rule_tac [2] a = "y" in ProdE)
+apply (tactic {* typechk_tac (thms "prems") *})
+apply (rule SumE, assumption)
+apply (tactic "intr_tac []")
+apply (tactic "TRYALL assume_tac")
+apply (tactic {* typechk_tac (thms "prems") *})
+done
+
+end