src/HOL/Power.thy
changeset 61944 5d06ecfdb472
parent 61799 4cf66f21b764
child 61955 e96292f32c3c
--- a/src/HOL/Power.thy	Sun Dec 27 22:07:17 2015 +0100
+++ b/src/HOL/Power.thy	Mon Dec 28 01:26:34 2015 +0100
@@ -622,24 +622,20 @@
 context linordered_idom
 begin
 
-lemma power_abs:
-  "abs (a ^ n) = abs a ^ n"
+lemma power_abs: "\<bar>a ^ n\<bar> = \<bar>a\<bar> ^ n"
   by (induct n) (auto simp add: abs_mult)
 
-lemma abs_power_minus [simp]:
-  "abs ((-a) ^ n) = abs (a ^ n)"
+lemma abs_power_minus [simp]: "\<bar>(-a) ^ n\<bar> = \<bar>a ^ n\<bar>"
   by (simp add: power_abs)
 
-lemma zero_less_power_abs_iff [simp]:
-  "0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0"
+lemma zero_less_power_abs_iff [simp]: "0 < \<bar>a\<bar> ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0"
 proof (induct n)
   case 0 show ?case by simp
 next
   case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff)
 qed
 
-lemma zero_le_power_abs [simp]:
-  "0 \<le> abs a ^ n"
+lemma zero_le_power_abs [simp]: "0 \<le> \<bar>a\<bar> ^ n"
   by (rule zero_le_power [OF abs_ge_zero])
 
 lemma zero_le_power2 [simp]:
@@ -658,12 +654,10 @@
   "a\<^sup>2 \<le> 0 \<longleftrightarrow> a = 0"
   by (simp add: le_less)
 
-lemma abs_power2 [simp]:
-  "abs (a\<^sup>2) = a\<^sup>2"
+lemma abs_power2 [simp]: "\<bar>a\<^sup>2\<bar> = a\<^sup>2"
   by (simp add: power2_eq_square abs_mult abs_mult_self)
 
-lemma power2_abs [simp]:
-  "(abs a)\<^sup>2 = a\<^sup>2"
+lemma power2_abs [simp]: "\<bar>a\<bar>\<^sup>2 = a\<^sup>2"
   by (simp add: power2_eq_square abs_mult_self)
 
 lemma odd_power_less_zero:
@@ -729,14 +723,14 @@
     by (auto intro!: power2_le_imp_le [OF _ abs_ge_zero])
 qed
 
-lemma abs_square_le_1:"x\<^sup>2 \<le> 1 \<longleftrightarrow> abs(x) \<le> 1"
+lemma abs_square_le_1:"x\<^sup>2 \<le> 1 \<longleftrightarrow> \<bar>x\<bar> \<le> 1"
   using abs_le_square_iff [of x 1]
   by simp
 
-lemma abs_square_eq_1: "x\<^sup>2 = 1 \<longleftrightarrow> abs(x) = 1"
+lemma abs_square_eq_1: "x\<^sup>2 = 1 \<longleftrightarrow> \<bar>x\<bar> = 1"
   by (auto simp add: abs_if power2_eq_1_iff)
 
-lemma abs_square_less_1: "x\<^sup>2 < 1 \<longleftrightarrow> abs(x) < 1"
+lemma abs_square_less_1: "x\<^sup>2 < 1 \<longleftrightarrow> \<bar>x\<bar> < 1"
   using  abs_square_eq_1 [of x] abs_square_le_1 [of x]
   by (auto simp add: le_less)