src/HOL/Order_Relation.thy
changeset 54552 5d57cbec0f0f
parent 54551 4cd6deb430c3
child 55026 258fa7b5a621
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Order_Relation.thy	Thu Nov 21 21:33:34 2013 +0100
@@ -0,0 +1,125 @@
+(*  Title:      HOL/Order_Relation.thy
+    Author:     Tobias Nipkow
+*)
+
+header {* Orders as Relations *}
+
+theory Order_Relation
+imports Wellfounded
+begin
+
+subsection{* Orders on a set *}
+
+definition "preorder_on A r \<equiv> refl_on A r \<and> trans r"
+
+definition "partial_order_on A r \<equiv> preorder_on A r \<and> antisym r"
+
+definition "linear_order_on A r \<equiv> partial_order_on A r \<and> total_on A r"
+
+definition "strict_linear_order_on A r \<equiv> trans r \<and> irrefl r \<and> total_on A r"
+
+definition "well_order_on A r \<equiv> linear_order_on A r \<and> wf(r - Id)"
+
+lemmas order_on_defs =
+  preorder_on_def partial_order_on_def linear_order_on_def
+  strict_linear_order_on_def well_order_on_def
+
+
+lemma preorder_on_empty[simp]: "preorder_on {} {}"
+by(simp add:preorder_on_def trans_def)
+
+lemma partial_order_on_empty[simp]: "partial_order_on {} {}"
+by(simp add:partial_order_on_def)
+
+lemma lnear_order_on_empty[simp]: "linear_order_on {} {}"
+by(simp add:linear_order_on_def)
+
+lemma well_order_on_empty[simp]: "well_order_on {} {}"
+by(simp add:well_order_on_def)
+
+
+lemma preorder_on_converse[simp]: "preorder_on A (r^-1) = preorder_on A r"
+by (simp add:preorder_on_def)
+
+lemma partial_order_on_converse[simp]:
+  "partial_order_on A (r^-1) = partial_order_on A r"
+by (simp add: partial_order_on_def)
+
+lemma linear_order_on_converse[simp]:
+  "linear_order_on A (r^-1) = linear_order_on A r"
+by (simp add: linear_order_on_def)
+
+
+lemma strict_linear_order_on_diff_Id:
+  "linear_order_on A r \<Longrightarrow> strict_linear_order_on A (r-Id)"
+by(simp add: order_on_defs trans_diff_Id)
+
+
+subsection{* Orders on the field *}
+
+abbreviation "Refl r \<equiv> refl_on (Field r) r"
+
+abbreviation "Preorder r \<equiv> preorder_on (Field r) r"
+
+abbreviation "Partial_order r \<equiv> partial_order_on (Field r) r"
+
+abbreviation "Total r \<equiv> total_on (Field r) r"
+
+abbreviation "Linear_order r \<equiv> linear_order_on (Field r) r"
+
+abbreviation "Well_order r \<equiv> well_order_on (Field r) r"
+
+
+lemma subset_Image_Image_iff:
+  "\<lbrakk> Preorder r; A \<subseteq> Field r; B \<subseteq> Field r\<rbrakk> \<Longrightarrow>
+   r `` A \<subseteq> r `` B \<longleftrightarrow> (\<forall>a\<in>A.\<exists>b\<in>B. (b,a):r)"
+unfolding preorder_on_def refl_on_def Image_def
+apply (simp add: subset_eq)
+unfolding trans_def by fast
+
+lemma subset_Image1_Image1_iff:
+  "\<lbrakk> Preorder r; a : Field r; b : Field r\<rbrakk> \<Longrightarrow> r `` {a} \<subseteq> r `` {b} \<longleftrightarrow> (b,a):r"
+by(simp add:subset_Image_Image_iff)
+
+lemma Refl_antisym_eq_Image1_Image1_iff:
+  assumes r: "Refl r" and as: "antisym r" and abf: "a \<in> Field r" "b \<in> Field r"
+  shows "r `` {a} = r `` {b} \<longleftrightarrow> a = b"
+proof
+  assume "r `` {a} = r `` {b}"
+  hence e: "\<And>x. (a, x) \<in> r \<longleftrightarrow> (b, x) \<in> r" by (simp add: set_eq_iff)
+  have "(a, a) \<in> r" "(b, b) \<in> r" using r abf by (simp_all add: refl_on_def)
+  hence "(a, b) \<in> r" "(b, a) \<in> r" using e[of a] e[of b] by simp_all
+  thus "a = b" using as[unfolded antisym_def] by blast
+qed fast
+
+lemma Partial_order_eq_Image1_Image1_iff:
+  "\<lbrakk>Partial_order r; a:Field r; b:Field r\<rbrakk> \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a=b"
+by(auto simp:order_on_defs Refl_antisym_eq_Image1_Image1_iff)
+
+lemma Total_Id_Field:
+assumes TOT: "Total r" and NID: "\<not> (r <= Id)"
+shows "Field r = Field(r - Id)"
+using mono_Field[of "r - Id" r] Diff_subset[of r Id]
+proof(auto)
+  have "r \<noteq> {}" using NID by fast
+  then obtain b and c where "b \<noteq> c \<and> (b,c) \<in> r" using NID by auto
+  hence 1: "b \<noteq> c \<and> {b,c} \<le> Field r" by (auto simp: Field_def)
+
+  fix a assume *: "a \<in> Field r"
+  obtain d where 2: "d \<in> Field r" and 3: "d \<noteq> a"
+  using * 1 by auto
+  hence "(a,d) \<in> r \<or> (d,a) \<in> r" using * TOT
+  by (simp add: total_on_def)
+  thus "a \<in> Field(r - Id)" using 3 unfolding Field_def by blast
+qed
+
+
+subsection{* Orders on a type *}
+
+abbreviation "strict_linear_order \<equiv> strict_linear_order_on UNIV"
+
+abbreviation "linear_order \<equiv> linear_order_on UNIV"
+
+abbreviation "well_order \<equiv> well_order_on UNIV"
+
+end