--- a/src/HOL/Nat.ML Tue Jan 30 15:19:20 1996 +0100
+++ b/src/HOL/Nat.ML Tue Jan 30 15:24:36 1996 +0100
@@ -1,6 +1,6 @@
-(* Title: HOL/nat
+(* Title: HOL/nat
ID: $Id$
- Author: Tobias Nipkow, Cambridge University Computer Laboratory
+ Author: Tobias Nipkow, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
For nat.thy. Type nat is defined as a set (Nat) over the type ind.
@@ -47,7 +47,7 @@
(*Perform induction on n. *)
fun nat_ind_tac a i =
EVERY [res_inst_tac [("n",a)] nat_induct i,
- rename_last_tac a ["1"] (i+1)];
+ rename_last_tac a ["1"] (i+1)];
(*A special form of induction for reasoning about m<n and m-n*)
val prems = goal Nat.thy
@@ -133,7 +133,7 @@
goalw Nat.thy [nat_case_def] "nat_case a f (Suc k) = f(k)";
by (fast_tac (set_cs addIs [select_equality]
- addEs [make_elim Suc_inject, Suc_neq_Zero]) 1);
+ addEs [make_elim Suc_inject, Suc_neq_Zero]) 1);
qed "nat_case_Suc";
(** Introduction rules for 'pred_nat' **)
@@ -153,7 +153,7 @@
by (strip_tac 1);
by (nat_ind_tac "x" 1);
by (fast_tac (HOL_cs addSEs [mp, pred_natE, Pair_inject,
- make_elim Suc_inject]) 2);
+ make_elim Suc_inject]) 2);
by (fast_tac (HOL_cs addSEs [mp, pred_natE, Pair_inject, Zero_neq_Suc]) 1);
qed "wf_pred_nat";
@@ -245,7 +245,7 @@
\ |] ==> P";
by (rtac (major RS tranclE) 1);
by (REPEAT_FIRST (bound_hyp_subst_tac ORELSE'
- eresolve_tac (prems@[pred_natE, Pair_inject])));
+ eresolve_tac (prems@[pred_natE, Pair_inject])));
by (rtac refl 1);
qed "lessE";
@@ -271,7 +271,7 @@
goal Nat.thy "(m < Suc(n)) = (m < n | m = n)";
by (fast_tac (HOL_cs addSIs [lessI]
- addEs [less_trans, less_SucE]) 1);
+ addEs [less_trans, less_SucE]) 1);
qed "less_Suc_eq";
val prems = goal Nat.thy "m<n ==> n ~= 0";
@@ -289,8 +289,8 @@
by (rtac impI 1);
by (etac less_zeroE 1);
by (fast_tac (HOL_cs addSIs [lessI RS less_SucI]
- addSDs [Suc_inject]
- addEs [less_trans, lessE]) 1);
+ addSDs [Suc_inject]
+ addEs [less_trans, lessE]) 1);
qed "Suc_lessD";
val [major,minor] = goal Nat.thy
@@ -315,8 +315,8 @@
by (rtac impI 1);
by (etac less_zeroE 1);
by (fast_tac (HOL_cs addSIs [lessI]
- addSDs [Suc_inject]
- addEs [less_trans, lessE]) 1);
+ addSDs [Suc_inject]
+ addEs [less_trans, lessE]) 1);
qed "Suc_mono";
goal Nat.thy "(Suc(m) < Suc(n)) = (m<n)";