doc-src/TutorialI/Inductive/document/Advanced.tex
changeset 48519 5deda0549f97
parent 48518 0c86acc069ad
child 48520 6d4ea2efa64b
--- a/doc-src/TutorialI/Inductive/document/Advanced.tex	Thu Jul 26 16:54:44 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,599 +0,0 @@
-%
-\begin{isabellebody}%
-\def\isabellecontext{Advanced}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isadelimML
-%
-\endisadelimML
-%
-\isatagML
-%
-\endisatagML
-{\isafoldML}%
-%
-\isadelimML
-%
-\endisadelimML
-%
-\begin{isamarkuptext}%
-The premises of introduction rules may contain universal quantifiers and
-monotone functions.  A universal quantifier lets the rule 
-refer to any number of instances of 
-the inductively defined set.  A monotone function lets the rule refer
-to existing constructions (such as ``list of'') over the inductively defined
-set.  The examples below show how to use the additional expressiveness
-and how to reason from the resulting definitions.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Universal Quantifiers in Introduction Rules \label{sec:gterm-datatype}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\index{ground terms example|(}%
-\index{quantifiers!and inductive definitions|(}%
-As a running example, this section develops the theory of \textbf{ground
-terms}: terms constructed from constant and function 
-symbols but not variables. To simplify matters further, we regard a
-constant as a function applied to the null argument  list.  Let us declare a
-datatype \isa{gterm} for the type of ground  terms. It is a type constructor
-whose argument is a type of  function symbols.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{datatype}\isamarkupfalse%
-\ {\isaliteral{27}{\isacharprime}}f\ gterm\ {\isaliteral{3D}{\isacharequal}}\ Apply\ {\isaliteral{27}{\isacharprime}}f\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}f\ gterm\ list{\isaliteral{22}{\isachardoublequoteclose}}%
-\begin{isamarkuptext}%
-To try it out, we declare a datatype of some integer operations: 
-integer constants, the unary minus operator and the addition 
-operator.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{datatype}\isamarkupfalse%
-\ integer{\isaliteral{5F}{\isacharunderscore}}op\ {\isaliteral{3D}{\isacharequal}}\ Number\ int\ {\isaliteral{7C}{\isacharbar}}\ UnaryMinus\ {\isaliteral{7C}{\isacharbar}}\ Plus%
-\begin{isamarkuptext}%
-Now the type \isa{integer{\isaliteral{5F}{\isacharunderscore}}op\ gterm} denotes the ground 
-terms built over those symbols.
-
-The type constructor \isa{gterm} can be generalized to a function 
-over sets.  It returns 
-the set of ground terms that can be formed over a set \isa{F} of function symbols. For
-example,  we could consider the set of ground terms formed from the finite 
-set \isa{{\isaliteral{7B}{\isacharbraceleft}}Number\ {\isadigit{2}}{\isaliteral{2C}{\isacharcomma}}\ UnaryMinus{\isaliteral{2C}{\isacharcomma}}\ Plus{\isaliteral{7D}{\isacharbraceright}}}.
-
-This concept is inductive. If we have a list \isa{args} of ground terms 
-over~\isa{F} and a function symbol \isa{f} in \isa{F}, then we 
-can apply \isa{f} to \isa{args} to obtain another ground term. 
-The only difficulty is that the argument list may be of any length. Hitherto, 
-each rule in an inductive definition referred to the inductively 
-defined set a fixed number of times, typically once or twice. 
-A universal quantifier in the premise of the introduction rule 
-expresses that every element of \isa{args} belongs
-to our inductively defined set: is a ground term 
-over~\isa{F}.  The function \isa{set} denotes the set of elements in a given 
-list.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
-\isanewline
-\ \ gterms\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}f\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}f\ gterm\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-\ \ \isakeyword{for}\ F\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}f\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-\isakeyword{where}\isanewline
-step{\isaliteral{5B}{\isacharbrackleft}}intro{\isaliteral{21}{\isacharbang}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ set\ args{\isaliteral{2E}{\isachardot}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F{\isaliteral{3B}{\isacharsemicolon}}\ \ f\ {\isaliteral{5C3C696E3E}{\isasymin}}\ F{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}Apply\ f\ args{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F{\isaliteral{22}{\isachardoublequoteclose}}%
-\begin{isamarkuptext}%
-To demonstrate a proof from this definition, let us 
-show that the function \isa{gterms}
-is \textbf{monotone}.  We shall need this concept shortly.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{lemma}\isamarkupfalse%
-\ gterms{\isaliteral{5F}{\isacharunderscore}}mono{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}F{\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}G\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ gterms\ F\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ gterms\ G{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{apply}\isamarkupfalse%
-\ clarify\isanewline
-\isacommand{apply}\isamarkupfalse%
-\ {\isaliteral{28}{\isacharparenleft}}erule\ gterms{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
-\isacommand{apply}\isamarkupfalse%
-\ blast\isanewline
-\isacommand{done}\isamarkupfalse%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-%
-\begin{isamarkuptxt}%
-Intuitively, this theorem says that
-enlarging the set of function symbols enlarges the set of ground 
-terms. The proof is a trivial rule induction.
-First we use the \isa{clarify} method to assume the existence of an element of
-\isa{gterms\ F}.  (We could have used \isa{intro\ subsetI}.)  We then
-apply rule induction. Here is the resulting subgoal:
-\begin{isabelle}%
-\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ args\ f{\isaliteral{2E}{\isachardot}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}F\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ G{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t{\isaliteral{5C3C696E3E}{\isasymin}}set\ args{\isaliteral{2E}{\isachardot}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G{\isaliteral{3B}{\isacharsemicolon}}\ f\ {\isaliteral{5C3C696E3E}{\isasymin}}\ F{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G%
-\end{isabelle}
-The assumptions state that \isa{f} belongs 
-to~\isa{F}, which is included in~\isa{G}, and that every element of the list \isa{args} is
-a ground term over~\isa{G}.  The \isa{blast} method finds this chain of reasoning easily.%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-\begin{warn}
-Why do we call this function \isa{gterms} instead 
-of \isa{gterm}?  A constant may have the same name as a type.  However,
-name  clashes could arise in the theorems that Isabelle generates. 
-Our choice of names keeps \isa{gterms{\isaliteral{2E}{\isachardot}}induct} separate from 
-\isa{gterm{\isaliteral{2E}{\isachardot}}induct}.
-\end{warn}
-
-Call a term \textbf{well-formed} if each symbol occurring in it is applied
-to the correct number of arguments.  (This number is called the symbol's
-\textbf{arity}.)  We can express well-formedness by
-generalizing the inductive definition of
-\isa{gterms}.
-Suppose we are given a function called \isa{arity}, specifying the arities
-of all symbols.  In the inductive step, we have a list \isa{args} of such
-terms and a function  symbol~\isa{f}. If the length of the list matches the
-function's arity  then applying \isa{f} to \isa{args} yields a well-formed
-term.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
-\isanewline
-\ \ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}f\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ nat{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}f\ gterm\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-\ \ \isakeyword{for}\ arity\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}f\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ nat{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-\isakeyword{where}\isanewline
-step{\isaliteral{5B}{\isacharbrackleft}}intro{\isaliteral{21}{\isacharbang}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ set\ args{\isaliteral{2E}{\isachardot}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity{\isaliteral{3B}{\isacharsemicolon}}\ \ \isanewline
-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ length\ args\ {\isaliteral{3D}{\isacharequal}}\ arity\ f{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}Apply\ f\ args{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity{\isaliteral{22}{\isachardoublequoteclose}}%
-\begin{isamarkuptext}%
-The inductive definition neatly captures the reasoning above.
-The universal quantification over the
-\isa{set} of arguments expresses that all of them are well-formed.%
-\index{quantifiers!and inductive definitions|)}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Alternative Definition Using a Monotone Function%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\index{monotone functions!and inductive definitions|(}% 
-An inductive definition may refer to the
-inductively defined  set through an arbitrary monotone function.  To
-demonstrate this powerful feature, let us
-change the  inductive definition above, replacing the
-quantifier by a use of the function \isa{lists}. This
-function, from the Isabelle theory of lists, is analogous to the
-function \isa{gterms} declared above: if \isa{A} is a set then
-\isa{lists\ A} is the set of lists whose elements belong to
-\isa{A}.  
-
-In the inductive definition of well-formed terms, examine the one
-introduction rule.  The first premise states that \isa{args} belongs to
-the \isa{lists} of well-formed terms.  This formulation is more
-direct, if more obscure, than using a universal quantifier.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
-\isanewline
-\ \ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}f\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ nat{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}f\ gterm\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-\ \ \isakeyword{for}\ arity\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}f\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ nat{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-\isakeyword{where}\isanewline
-step{\isaliteral{5B}{\isacharbrackleft}}intro{\isaliteral{21}{\isacharbang}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lists\ {\isaliteral{28}{\isacharparenleft}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity{\isaliteral{29}{\isacharparenright}}{\isaliteral{3B}{\isacharsemicolon}}\ \ \isanewline
-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ length\ args\ {\isaliteral{3D}{\isacharequal}}\ arity\ f{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}Apply\ f\ args{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-\isakeyword{monos}\ lists{\isaliteral{5F}{\isacharunderscore}}mono%
-\begin{isamarkuptext}%
-We cite the theorem \isa{lists{\isaliteral{5F}{\isacharunderscore}}mono} to justify 
-using the function \isa{lists}.%
-\footnote{This particular theorem is installed by default already, but we
-include the \isakeyword{monos} declaration in order to illustrate its syntax.}
-\begin{isabelle}%
-A\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ B\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ lists\ A\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ lists\ B\rulename{lists{\isaliteral{5F}{\isacharunderscore}}mono}%
-\end{isabelle}
-Why must the function be monotone?  An inductive definition describes
-an iterative construction: each element of the set is constructed by a
-finite number of introduction rule applications.  For example, the
-elements of \isa{even} are constructed by finitely many applications of
-the rules
-\begin{isabelle}%
-{\isadigit{0}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ even\isasep\isanewline%
-n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ even\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Suc\ {\isaliteral{28}{\isacharparenleft}}Suc\ n{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ even%
-\end{isabelle}
-All references to a set in its
-inductive definition must be positive.  Applications of an
-introduction rule cannot invalidate previous applications, allowing the
-construction process to converge.
-The following pair of rules do not constitute an inductive definition:
-\begin{trivlist}
-\item \isa{{\isadigit{0}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ even}
-\item \isa{n\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ even\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Suc\ n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ even}
-\end{trivlist}
-Showing that 4 is even using these rules requires showing that 3 is not
-even.  It is far from trivial to show that this set of rules
-characterizes the even numbers.  
-
-Even with its use of the function \isa{lists}, the premise of our
-introduction rule is positive:
-\begin{isabelle}%
-args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lists\ {\isaliteral{28}{\isacharparenleft}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity{\isaliteral{29}{\isacharparenright}}%
-\end{isabelle}
-To apply the rule we construct a list \isa{args} of previously
-constructed well-formed terms.  We obtain a
-new term, \isa{Apply\ f\ args}.  Because \isa{lists} is monotone,
-applications of the rule remain valid as new terms are constructed.
-Further lists of well-formed
-terms become available and none are taken away.%
-\index{monotone functions!and inductive definitions|)}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{A Proof of Equivalence%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-We naturally hope that these two inductive definitions of ``well-formed'' 
-coincide.  The equality can be proved by separate inclusions in 
-each direction.  Each is a trivial rule induction.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{lemma}\isamarkupfalse%
-\ {\isaliteral{22}{\isachardoublequoteopen}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{apply}\isamarkupfalse%
-\ clarify\isanewline
-\isacommand{apply}\isamarkupfalse%
-\ {\isaliteral{28}{\isacharparenleft}}erule\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
-\isacommand{apply}\isamarkupfalse%
-\ auto\isanewline
-\isacommand{done}\isamarkupfalse%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-%
-\begin{isamarkuptxt}%
-The \isa{clarify} method gives
-us an element of \isa{well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity} on which to perform 
-induction.  The resulting subgoal can be proved automatically:
-\begin{isabelle}%
-\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ args\ f{\isaliteral{2E}{\isachardot}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t{\isaliteral{5C3C696E3E}{\isasymin}}set\ args{\isaliteral{2E}{\isachardot}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ \ \ }t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity{\isaliteral{3B}{\isacharsemicolon}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ \ }length\ args\ {\isaliteral{3D}{\isacharequal}}\ arity\ f{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity%
-\end{isabelle}
-This proof resembles the one given in
-{\S}\ref{sec:gterm-datatype} above, especially in the form of the
-induction hypothesis.  Next, we consider the opposite inclusion:%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-\isacommand{lemma}\isamarkupfalse%
-\ {\isaliteral{22}{\isachardoublequoteopen}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{apply}\isamarkupfalse%
-\ clarify\isanewline
-\isacommand{apply}\isamarkupfalse%
-\ {\isaliteral{28}{\isacharparenleft}}erule\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
-\isacommand{apply}\isamarkupfalse%
-\ auto\isanewline
-\isacommand{done}\isamarkupfalse%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-%
-\begin{isamarkuptxt}%
-The proof script is virtually identical,
-but the subgoal after applying induction may be surprising:
-\begin{isabelle}%
-\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ args\ f{\isaliteral{2E}{\isachardot}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}args\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}}{\isaliteral{5C3C696E3E}{\isasymin}}\ lists\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C696E3E}{\isasymin}}\ \ }{\isaliteral{28}{\isacharparenleft}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C696E3E}{\isasymin}}\ \ {\isaliteral{28}{\isacharparenleft}}}{\isaliteral{7B}{\isacharbraceleft}}a{\isaliteral{2E}{\isachardot}}\ a\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{3B}{\isacharsemicolon}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ \ }length\ args\ {\isaliteral{3D}{\isacharequal}}\ arity\ f{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity%
-\end{isabelle}
-The induction hypothesis contains an application of \isa{lists}.  Using a
-monotone function in the inductive definition always has this effect.  The
-subgoal may look uninviting, but fortunately 
-\isa{lists} distributes over intersection:
-\begin{isabelle}%
-lists\ {\isaliteral{28}{\isacharparenleft}}A\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ B{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ lists\ A\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ lists\ B\rulename{lists{\isaliteral{5F}{\isacharunderscore}}Int{\isaliteral{5F}{\isacharunderscore}}eq}%
-\end{isabelle}
-Thanks to this default simplification rule, the induction hypothesis 
-is quickly replaced by its two parts:
-\begin{trivlist}
-\item \isa{args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lists\ {\isaliteral{28}{\isacharparenleft}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity{\isaliteral{29}{\isacharparenright}}}
-\item \isa{args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lists\ {\isaliteral{28}{\isacharparenleft}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity{\isaliteral{29}{\isacharparenright}}}
-\end{trivlist}
-Invoking the rule \isa{well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{2E}{\isachardot}}step} completes the proof.  The
-call to \isa{auto} does all this work.
-
-This example is typical of how monotone functions
-\index{monotone functions} can be used.  In particular, many of them
-distribute over intersection.  Monotonicity implies one direction of
-this set equality; we have this theorem:
-\begin{isabelle}%
-mono\ f\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ f\ {\isaliteral{28}{\isacharparenleft}}A\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ B{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ f\ A\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ f\ B\rulename{mono{\isaliteral{5F}{\isacharunderscore}}Int}%
-\end{isabelle}%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isamarkupsubsection{Another Example of Rule Inversion%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\index{rule inversion|(}%
-Does \isa{gterms} distribute over intersection?  We have proved that this
-function is monotone, so \isa{mono{\isaliteral{5F}{\isacharunderscore}}Int} gives one of the inclusions.  The
-opposite inclusion asserts that if \isa{t} is a ground term over both of the
-sets
-\isa{F} and~\isa{G} then it is also a ground term over their intersection,
-\isa{F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ G}.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{lemma}\isamarkupfalse%
-\ gterms{\isaliteral{5F}{\isacharunderscore}}IntI{\isaliteral{3A}{\isacharcolon}}\isanewline
-\ \ \ \ \ {\isaliteral{22}{\isachardoublequoteopen}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ {\isaliteral{28}{\isacharparenleft}}F{\isaliteral{5C3C696E7465723E}{\isasyminter}}G{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-Attempting this proof, we get the assumption 
-\isa{Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G}, which cannot be broken down. 
-It looks like a job for rule inversion:\cmmdx{inductive\protect\_cases}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}cases}\isamarkupfalse%
-\ gterm{\isaliteral{5F}{\isacharunderscore}}Apply{\isaliteral{5F}{\isacharunderscore}}elim\ {\isaliteral{5B}{\isacharbrackleft}}elim{\isaliteral{21}{\isacharbang}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F{\isaliteral{22}{\isachardoublequoteclose}}%
-\begin{isamarkuptext}%
-Here is the result.
-\begin{isabelle}%
-{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F{\isaliteral{3B}{\isacharsemicolon}}\isanewline
-\isaindent{\ }{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t{\isaliteral{5C3C696E3E}{\isasymin}}set\ args{\isaliteral{2E}{\isachardot}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F{\isaliteral{3B}{\isacharsemicolon}}\ f\ {\isaliteral{5C3C696E3E}{\isasymin}}\ F{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
-{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\rulename{gterm{\isaliteral{5F}{\isacharunderscore}}Apply{\isaliteral{5F}{\isacharunderscore}}elim}%
-\end{isabelle}
-This rule replaces an assumption about \isa{Apply\ f\ args} by 
-assumptions about \isa{f} and~\isa{args}.  
-No cases are discarded (there was only one to begin
-with) but the rule applies specifically to the pattern \isa{Apply\ f\ args}.
-It can be applied repeatedly as an elimination rule without looping, so we
-have given the \isa{elim{\isaliteral{21}{\isacharbang}}} attribute. 
-
-Now we can prove the other half of that distributive law.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{lemma}\isamarkupfalse%
-\ gterms{\isaliteral{5F}{\isacharunderscore}}IntI\ {\isaliteral{5B}{\isacharbrackleft}}rule{\isaliteral{5F}{\isacharunderscore}}format{\isaliteral{2C}{\isacharcomma}}\ intro{\isaliteral{21}{\isacharbang}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\isanewline
-\ \ \ \ \ {\isaliteral{22}{\isachardoublequoteopen}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ {\isaliteral{28}{\isacharparenleft}}F{\isaliteral{5C3C696E7465723E}{\isasyminter}}G{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{apply}\isamarkupfalse%
-\ {\isaliteral{28}{\isacharparenleft}}erule\ gterms{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
-\isacommand{apply}\isamarkupfalse%
-\ blast\isanewline
-\isacommand{done}\isamarkupfalse%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-%
-\begin{isamarkuptxt}%
-The proof begins with rule induction over the definition of
-\isa{gterms}, which leaves a single subgoal:  
-\begin{isabelle}%
-\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}args\ f{\isaliteral{2E}{\isachardot}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t{\isaliteral{5C3C696E3E}{\isasymin}}set\ args{\isaliteral{2E}{\isachardot}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ \ \ }t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F\ {\isaliteral{5C3C616E643E}{\isasymand}}\ {\isaliteral{28}{\isacharparenleft}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ {\isaliteral{28}{\isacharparenleft}}F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ G{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{3B}{\isacharsemicolon}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ \ }f\ {\isaliteral{5C3C696E3E}{\isasymin}}\ F{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\isanewline
-\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ }Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ {\isaliteral{28}{\isacharparenleft}}F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ G{\isaliteral{29}{\isacharparenright}}%
-\end{isabelle}
-To prove this, we assume \isa{Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G}.  Rule inversion,
-in the form of \isa{gterm{\isaliteral{5F}{\isacharunderscore}}Apply{\isaliteral{5F}{\isacharunderscore}}elim}, infers
-that every element of \isa{args} belongs to 
-\isa{gterms\ G}; hence (by the induction hypothesis) it belongs
-to \isa{gterms\ {\isaliteral{28}{\isacharparenleft}}F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ G{\isaliteral{29}{\isacharparenright}}}.  Rule inversion also yields
-\isa{f\ {\isaliteral{5C3C696E3E}{\isasymin}}\ G} and hence \isa{f\ {\isaliteral{5C3C696E3E}{\isasymin}}\ F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ G}. 
-All of this reasoning is done by \isa{blast}.
-
-\smallskip
-Our distributive law is a trivial consequence of previously-proved results:%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-\isacommand{lemma}\isamarkupfalse%
-\ gterms{\isaliteral{5F}{\isacharunderscore}}Int{\isaliteral{5F}{\isacharunderscore}}eq\ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\isanewline
-\ \ \ \ \ {\isaliteral{22}{\isachardoublequoteopen}}gterms\ {\isaliteral{28}{\isacharparenleft}}F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ G{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ gterms\ F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ gterms\ G{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{by}\isamarkupfalse%
-\ {\isaliteral{28}{\isacharparenleft}}blast\ intro{\isaliteral{21}{\isacharbang}}{\isaliteral{3A}{\isacharcolon}}\ mono{\isaliteral{5F}{\isacharunderscore}}Int\ monoI\ gterms{\isaliteral{5F}{\isacharunderscore}}mono{\isaliteral{29}{\isacharparenright}}%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\index{rule inversion|)}%
-\index{ground terms example|)}
-
-
-\begin{isamarkuptext}
-\begin{exercise}
-A function mapping function symbols to their 
-types is called a \textbf{signature}.  Given a type 
-ranging over type symbols, we can represent a function's type by a
-list of argument types paired with the result type. 
-Complete this inductive definition:
-\begin{isabelle}
-\isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
-\isanewline
-\ \ well{\isaliteral{5F}{\isacharunderscore}}typed{\isaliteral{5F}{\isacharunderscore}}gterm\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}f\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}t\ list\ {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{27}{\isacharprime}}t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}f\ gterm\ {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{27}{\isacharprime}}t{\isaliteral{29}{\isacharparenright}}set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-\ \ \isakeyword{for}\ sig\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}f\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}t\ list\ {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{27}{\isacharprime}}t{\isaliteral{22}{\isachardoublequoteclose}}%
-\end{isabelle}
-\end{exercise}
-\end{isamarkuptext}
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-\end{isabellebody}%
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "root"
-%%% End: