doc-src/TutorialI/document/Star.tex
changeset 48519 5deda0549f97
parent 40406 313a24b66a8d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/TutorialI/document/Star.tex	Thu Jul 26 17:16:02 2012 +0200
@@ -0,0 +1,315 @@
+%
+\begin{isabellebody}%
+\def\isabellecontext{Star}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isamarkupsection{The Reflexive Transitive Closure%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\label{sec:rtc}
+\index{reflexive transitive closure!defining inductively|(}%
+An inductive definition may accept parameters, so it can express 
+functions that yield sets.
+Relations too can be defined inductively, since they are just sets of pairs.
+A perfect example is the function that maps a relation to its
+reflexive transitive closure.  This concept was already
+introduced in \S\ref{sec:Relations}, where the operator \isa{\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}} was
+defined as a least fixed point because inductive definitions were not yet
+available. But now they are:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
+\isanewline
+\ \ rtc\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}set{\isaliteral{22}{\isachardoublequoteclose}}\ \ \ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5F}{\isacharunderscore}}{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isadigit{0}}{\isaliteral{5D}{\isacharbrackright}}\ {\isadigit{9}}{\isadigit{9}}{\isadigit{9}}{\isaliteral{29}{\isacharparenright}}\isanewline
+\ \ \isakeyword{for}\ r\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+\isakeyword{where}\isanewline
+\ \ rtc{\isaliteral{5F}{\isacharunderscore}}refl{\isaliteral{5B}{\isacharbrackleft}}iff{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+{\isaliteral{7C}{\isacharbar}}\ rtc{\isaliteral{5F}{\isacharunderscore}}step{\isaliteral{3A}{\isacharcolon}}\ \ \ \ \ \ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{22}{\isachardoublequoteclose}}%
+\begin{isamarkuptext}%
+\noindent
+The function \isa{rtc} is annotated with concrete syntax: instead of
+\isa{rtc\ r} we can write \isa{r{\isaliteral{2A}{\isacharasterisk}}}. The actual definition
+consists of two rules. Reflexivity is obvious and is immediately given the
+\isa{iff} attribute to increase automation. The
+second rule, \isa{rtc{\isaliteral{5F}{\isacharunderscore}}step}, says that we can always add one more
+\isa{r}-step to the left. Although we could make \isa{rtc{\isaliteral{5F}{\isacharunderscore}}step} an
+introduction rule, this is dangerous: the recursion in the second premise
+slows down and may even kill the automatic tactics.
+
+The above definition of the concept of reflexive transitive closure may
+be sufficiently intuitive but it is certainly not the only possible one:
+for a start, it does not even mention transitivity.
+The rest of this section is devoted to proving that it is equivalent to
+the standard definition. We start with a simple lemma:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{lemma}\isamarkupfalse%
+\ {\isaliteral{5B}{\isacharbrackleft}}intro{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+\isacommand{by}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}blast\ intro{\isaliteral{3A}{\isacharcolon}}\ rtc{\isaliteral{5F}{\isacharunderscore}}step{\isaliteral{29}{\isacharparenright}}%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\begin{isamarkuptext}%
+\noindent
+Although the lemma itself is an unremarkable consequence of the basic rules,
+it has the advantage that it can be declared an introduction rule without the
+danger of killing the automatic tactics because \isa{r{\isaliteral{2A}{\isacharasterisk}}} occurs only in
+the conclusion and not in the premise. Thus some proofs that would otherwise
+need \isa{rtc{\isaliteral{5F}{\isacharunderscore}}step} can now be found automatically. The proof also
+shows that \isa{blast} is able to handle \isa{rtc{\isaliteral{5F}{\isacharunderscore}}step}. But
+some of the other automatic tactics are more sensitive, and even \isa{blast} can be lead astray in the presence of large numbers of rules.
+
+To prove transitivity, we need rule induction, i.e.\ theorem
+\isa{rtc{\isaliteral{2E}{\isachardot}}induct}:
+\begin{isabelle}%
+\ \ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{3F}{\isacharquery}}x{\isadigit{1}}{\isaliteral{2E}{\isachardot}}{\isadigit{0}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{3F}{\isacharquery}}x{\isadigit{2}}{\isaliteral{2E}{\isachardot}}{\isadigit{0}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ {\isaliteral{3F}{\isacharquery}}r{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x{\isaliteral{2E}{\isachardot}}\ {\isaliteral{3F}{\isacharquery}}P\ x\ x{\isaliteral{3B}{\isacharsemicolon}}\isanewline
+\isaindent{\ \ \ \ \ \ }{\isaliteral{5C3C416E643E}{\isasymAnd}}x\ y\ z{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ {\isaliteral{3F}{\isacharquery}}r{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ {\isaliteral{3F}{\isacharquery}}r{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{3F}{\isacharquery}}P\ y\ z{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}P\ x\ z{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
+\isaindent{\ \ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}P\ {\isaliteral{3F}{\isacharquery}}x{\isadigit{1}}{\isaliteral{2E}{\isachardot}}{\isadigit{0}}\ {\isaliteral{3F}{\isacharquery}}x{\isadigit{2}}{\isaliteral{2E}{\isachardot}}{\isadigit{0}}%
+\end{isabelle}
+It says that \isa{{\isaliteral{3F}{\isacharquery}}P} holds for an arbitrary pair \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{3F}{\isacharquery}}x{\isadigit{1}}{\isaliteral{2E}{\isachardot}}{\isadigit{0}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{3F}{\isacharquery}}x{\isadigit{2}}{\isaliteral{2E}{\isachardot}}{\isadigit{0}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ {\isaliteral{3F}{\isacharquery}}r{\isaliteral{2A}{\isacharasterisk}}}
+if \isa{{\isaliteral{3F}{\isacharquery}}P} is preserved by all rules of the inductive definition,
+i.e.\ if \isa{{\isaliteral{3F}{\isacharquery}}P} holds for the conclusion provided it holds for the
+premises. In general, rule induction for an $n$-ary inductive relation $R$
+expects a premise of the form $(x@1,\dots,x@n) \in R$.
+
+Now we turn to the inductive proof of transitivity:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{lemma}\isamarkupfalse%
+\ rtc{\isaliteral{5F}{\isacharunderscore}}trans{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+\isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}erule\ rtc{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}%
+\begin{isamarkuptxt}%
+\noindent
+Unfortunately, even the base case is a problem:
+\begin{isabelle}%
+\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}%
+\end{isabelle}
+We have to abandon this proof attempt.
+To understand what is going on, let us look again at \isa{rtc{\isaliteral{2E}{\isachardot}}induct}.
+In the above application of \isa{erule}, the first premise of
+\isa{rtc{\isaliteral{2E}{\isachardot}}induct} is unified with the first suitable assumption, which
+is \isa{{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}} rather than \isa{{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}}. Although that
+is what we want, it is merely due to the order in which the assumptions occur
+in the subgoal, which it is not good practice to rely on. As a result,
+\isa{{\isaliteral{3F}{\isacharquery}}xb} becomes \isa{x}, \isa{{\isaliteral{3F}{\isacharquery}}xa} becomes
+\isa{y} and \isa{{\isaliteral{3F}{\isacharquery}}P} becomes \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}u\ v{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}u{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}}, thus
+yielding the above subgoal. So what went wrong?
+
+When looking at the instantiation of \isa{{\isaliteral{3F}{\isacharquery}}P} we see that it does not
+depend on its second parameter at all. The reason is that in our original
+goal, of the pair \isa{{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}} only \isa{x} appears also in the
+conclusion, but not \isa{y}. Thus our induction statement is too
+general. Fortunately, it can easily be specialized:
+transfer the additional premise \isa{{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}} into the conclusion:%
+\end{isamarkuptxt}%
+\isamarkuptrue%
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+\isacommand{lemma}\isamarkupfalse%
+\ rtc{\isaliteral{5F}{\isacharunderscore}}trans{\isaliteral{5B}{\isacharbrackleft}}rule{\isaliteral{5F}{\isacharunderscore}}format{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\isanewline
+\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{22}{\isachardoublequoteclose}}%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+%
+\begin{isamarkuptxt}%
+\noindent
+This is not an obscure trick but a generally applicable heuristic:
+\begin{quote}\em
+When proving a statement by rule induction on $(x@1,\dots,x@n) \in R$,
+pull all other premises containing any of the $x@i$ into the conclusion
+using $\longrightarrow$.
+\end{quote}
+A similar heuristic for other kinds of inductions is formulated in
+\S\ref{sec:ind-var-in-prems}. The \isa{rule{\isaliteral{5F}{\isacharunderscore}}format} directive turns
+\isa{{\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}} back into \isa{{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}}: in the end we obtain the original
+statement of our lemma.%
+\end{isamarkuptxt}%
+\isamarkuptrue%
+\isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}erule\ rtc{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}%
+\begin{isamarkuptxt}%
+\noindent
+Now induction produces two subgoals which are both proved automatically:
+\begin{isabelle}%
+\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}\isanewline
+\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ y\ za{\isaliteral{2E}{\isachardot}}\isanewline
+\isaindent{\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ za{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{28}{\isacharparenleft}}za{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
+\isaindent{\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}za{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}%
+\end{isabelle}%
+\end{isamarkuptxt}%
+\isamarkuptrue%
+\ \isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}blast{\isaliteral{29}{\isacharparenright}}\isanewline
+\isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}blast\ intro{\isaliteral{3A}{\isacharcolon}}\ rtc{\isaliteral{5F}{\isacharunderscore}}step{\isaliteral{29}{\isacharparenright}}\isanewline
+\isacommand{done}\isamarkupfalse%
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\begin{isamarkuptext}%
+Let us now prove that \isa{r{\isaliteral{2A}{\isacharasterisk}}} is really the reflexive transitive closure
+of \isa{r}, i.e.\ the least reflexive and transitive
+relation containing \isa{r}. The latter is easily formalized%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
+\isanewline
+\ \ rtc{\isadigit{2}}\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+\ \ \isakeyword{for}\ r\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+\isakeyword{where}\isanewline
+\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ rtc{\isadigit{2}}\ r{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+{\isaliteral{7C}{\isacharbar}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ rtc{\isadigit{2}}\ r{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+{\isaliteral{7C}{\isacharbar}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ rtc{\isadigit{2}}\ r{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ rtc{\isadigit{2}}\ r\ {\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ rtc{\isadigit{2}}\ r{\isaliteral{22}{\isachardoublequoteclose}}%
+\begin{isamarkuptext}%
+\noindent
+and the equivalence of the two definitions is easily shown by the obvious rule
+inductions:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{lemma}\isamarkupfalse%
+\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ rtc{\isadigit{2}}\ r\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+\isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}erule\ rtc{\isadigit{2}}{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
+\ \ \isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}blast{\isaliteral{29}{\isacharparenright}}\isanewline
+\ \isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}blast{\isaliteral{29}{\isacharparenright}}\isanewline
+\isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}blast\ intro{\isaliteral{3A}{\isacharcolon}}\ rtc{\isaliteral{5F}{\isacharunderscore}}trans{\isaliteral{29}{\isacharparenright}}\isanewline
+\isacommand{done}\isamarkupfalse%
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+\isanewline
+%
+\endisadelimproof
+\isanewline
+\isacommand{lemma}\isamarkupfalse%
+\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ rtc{\isadigit{2}}\ r{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+\isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}erule\ rtc{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
+\ \isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}blast\ intro{\isaliteral{3A}{\isacharcolon}}\ rtc{\isadigit{2}}{\isaliteral{2E}{\isachardot}}intros{\isaliteral{29}{\isacharparenright}}\isanewline
+\isacommand{apply}\isamarkupfalse%
+{\isaliteral{28}{\isacharparenleft}}blast\ intro{\isaliteral{3A}{\isacharcolon}}\ rtc{\isadigit{2}}{\isaliteral{2E}{\isachardot}}intros{\isaliteral{29}{\isacharparenright}}\isanewline
+\isacommand{done}\isamarkupfalse%
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\begin{isamarkuptext}%
+So why did we start with the first definition? Because it is simpler. It
+contains only two rules, and the single step rule is simpler than
+transitivity.  As a consequence, \isa{rtc{\isaliteral{2E}{\isachardot}}induct} is simpler than
+\isa{rtc{\isadigit{2}}{\isaliteral{2E}{\isachardot}}induct}. Since inductive proofs are hard enough
+anyway, we should always pick the simplest induction schema available.
+Hence \isa{rtc} is the definition of choice.
+\index{reflexive transitive closure!defining inductively|)}
+
+\begin{exercise}\label{ex:converse-rtc-step}
+Show that the converse of \isa{rtc{\isaliteral{5F}{\isacharunderscore}}step} also holds:
+\begin{isabelle}%
+\ \ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{2A}{\isacharasterisk}}%
+\end{isabelle}
+\end{exercise}
+\begin{exercise}
+Repeat the development of this section, but starting with a definition of
+\isa{rtc} where \isa{rtc{\isaliteral{5F}{\isacharunderscore}}step} is replaced by its converse as shown
+in exercise~\ref{ex:converse-rtc-step}.
+\end{exercise}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+\end{isabellebody}%
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "root"
+%%% End: