--- a/src/HOL/Topological_Spaces.thy Mon Aug 26 23:39:53 2013 +0200
+++ b/src/HOL/Topological_Spaces.thy Tue Aug 27 14:37:56 2013 +0200
@@ -567,7 +567,7 @@
"eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top"
unfolding eventually_at_top_linorder by auto
-lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::dense_linorder. \<forall>n>N. P n)"
+lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::unbounded_dense_linorder. \<forall>n>N. P n)"
unfolding eventually_at_top_linorder
proof safe
fix N assume "\<forall>n\<ge>N. P n" then show "\<exists>N. \<forall>n>N. P n" by (auto intro!: exI[of _ N])
@@ -578,7 +578,7 @@
qed
lemma eventually_gt_at_top:
- "eventually (\<lambda>x. (c::_::dense_linorder) < x) at_top"
+ "eventually (\<lambda>x. (c::_::unbounded_dense_linorder) < x) at_top"
unfolding eventually_at_top_dense by auto
definition at_bot :: "('a::order) filter"
@@ -600,7 +600,7 @@
unfolding eventually_at_bot_linorder by auto
lemma eventually_at_bot_dense:
- fixes P :: "'a::dense_linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n<N. P n)"
+ fixes P :: "'a::unbounded_dense_linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n<N. P n)"
unfolding eventually_at_bot_linorder
proof safe
fix N assume "\<forall>n\<le>N. P n" then show "\<exists>N. \<forall>n<N. P n" by (auto intro!: exI[of _ N])
@@ -611,7 +611,7 @@
qed
lemma eventually_gt_at_bot:
- "eventually (\<lambda>x. x < (c::_::dense_linorder)) at_bot"
+ "eventually (\<lambda>x. x < (c::_::unbounded_dense_linorder)) at_bot"
unfolding eventually_at_bot_dense by auto
subsection {* Sequentially *}
@@ -794,11 +794,11 @@
qed
lemma trivial_limit_at_left_real [simp]:
- "\<not> trivial_limit (at_left (x::'a::{no_bot, dense_linorder, linorder_topology}))"
+ "\<not> trivial_limit (at_left (x::'a::{no_bot, unbounded_dense_linorder, linorder_topology}))"
unfolding trivial_limit_def eventually_at_left by (auto dest: dense)
lemma trivial_limit_at_right_real [simp]:
- "\<not> trivial_limit (at_right (x::'a::{no_top, dense_linorder, linorder_topology}))"
+ "\<not> trivial_limit (at_right (x::'a::{no_top, unbounded_dense_linorder, linorder_topology}))"
unfolding trivial_limit_def eventually_at_right by (auto dest: dense)
lemma at_eq_sup_left_right: "at (x::'a::linorder_topology) = sup (at_left x) (at_right x)"
@@ -1047,7 +1047,7 @@
by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_elim1)
lemma filterlim_at_top_dense:
- fixes f :: "'a \<Rightarrow> ('b::dense_linorder)"
+ fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)"
shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)"
by (metis eventually_elim1[of _ F] eventually_gt_at_top order_less_imp_le
filterlim_at_top[of f F] filterlim_iff[of f at_top F])
@@ -1084,7 +1084,7 @@
qed
lemma filterlim_at_top_gt:
- fixes f :: "'a \<Rightarrow> ('b::dense_linorder)" and c :: "'b"
+ fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)"
by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge)
@@ -1104,7 +1104,7 @@
qed simp
lemma filterlim_at_bot_lt:
- fixes f :: "'a \<Rightarrow> ('b::dense_linorder)" and c :: "'b"
+ fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)"
by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans)