src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy
changeset 7917 5e5b9813cce7
child 7927 b50446a33c16
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy	Fri Oct 22 20:14:31 1999 +0200
@@ -0,0 +1,346 @@
+(*  Title:      HOL/Real/HahnBanach/HahnBanachExtLemmas.thy
+    ID:         $Id$
+    Author:     Gertrud Bauer, TU Munich
+*)
+
+header {* Extending a non-ma\-xi\-mal function *};
+
+theory HahnBanachExtLemmas = FunctionNorm:;
+
+text{* In this section the following context is presumed.
+Let $E$ be a real vector space with a 
+quasinorm $q$ on $E$. $F$ is a subspace of $E$ and $f$ a linear 
+function on $F$. We consider a subspace $H$ of $E$ that is a 
+superspace of $F$ and a linearform $h$ on $H$. $H$ is a not equal 
+to $E$ and $x_0$ is an element in $E \backslash H$.
+$H$ is extended to the direct sum  $H_0 = H + \idt{lin}\ap x_0$, so for
+any $x\in H_0$ the decomposition of $x = y + a \mult x$ 
+with $y\in H$ is unique. $h_0$ is defined on $H_0$ by  
+$h_0 x = h y + a \cdot \xi$ for some $\xi$.
+
+Subsequently we show some properties of this extension $h_0$ of $h$.
+*}; 
+
+
+text {* This lemma will be used to show the existence of a linear 
+extension of $f$. It is a conclusion of the completenesss of the 
+reals. To show 
+\begin{matharray}{l}
+\exists \xi. \ap (\forall y\in F.\ap a\ap y \leq \xi) \land (\forall y\in F.\ap xi \leq b\ap y)
+\end{matharray}
+it suffices to show that 
+\begin{matharray}{l}
+\forall u\in F. \ap\forall v\in F. \ap a\ap u \leq b \ap v.
+\end{matharray}
+*};
+
+lemma ex_xi: 
+  "[| is_vectorspace F; !! u v. [| u:F; v:F |] ==> a u <= b v |]
+  ==> EX (xi::real). (ALL y:F. a y <= xi) & (ALL y:F. xi <= b y)"; 
+proof -;
+  assume vs: "is_vectorspace F";
+  assume r: "(!! u v. [| u:F; v:F |] ==> a u <= (b v::real))";
+
+  txt {* From the completeness of the reals follows:
+  The set $S = \{a\ap u.\ap u\in F\}$ has a supremum, if
+  it is non-empty and if it has an upperbound. *};
+
+  let ?S = "{s::real. EX u:F. s = a u}";
+
+  have "EX xi. isLub UNIV ?S xi";  
+  proof (rule reals_complete);
+  
+    txt {* The set $S$ is non-empty, since $a\ap\zero \in S$ *};
+
+    from vs; have "a <0> : ?S"; by force;
+    thus "EX X. X : ?S"; ..;
+
+    txt {* $b\ap \zero$ is an upperboud of $S$. *};
+
+    show "EX Y. isUb UNIV ?S Y"; 
+    proof; 
+      show "isUb UNIV ?S (b <0>)";
+      proof (intro isUbI setleI ballI);
+
+        txt {* Every element $y\in S$ is less than $b\ap \zero$ *};  
+
+        fix y; assume y: "y : ?S"; 
+        from y; have "EX u:F. y = a u"; ..;
+        thus "y <= b <0>"; 
+        proof;
+          fix u; assume "u:F"; assume "y = a u";
+          also; have "a u <= b <0>"; by (rule r) (simp!)+;
+          finally; show ?thesis; .;
+        qed;
+      next;
+        show "b <0> : UNIV"; by simp;
+      qed;
+    qed;
+  qed;
+
+  thus "EX xi. (ALL y:F. a y <= xi) & (ALL y:F. xi <= b y)"; 
+  proof (elim exE);
+    fix xi; assume "isLub UNIV ?S xi"; 
+    show ?thesis;
+    proof (intro exI conjI ballI); 
+   
+      txt {* For all $y\in F$ is $a\ap y \leq \xi$. *};
+     
+      fix y; assume y: "y:F";
+      show "a y <= xi";    
+      proof (rule isUbD);  
+        show "isUb UNIV ?S xi"; ..;
+      qed (force!);
+    next;
+
+      txt {* For all $y\in F$ is $\xi\leq b\ap y$. *};
+
+      fix y; assume "y:F";
+      show "xi <= b y";  
+      proof (intro isLub_le_isUb isUbI setleI);
+        show "b y : UNIV"; by simp;
+        show "ALL ya : ?S. ya <= b y"; 
+        proof;
+          fix au; assume au: "au : ?S ";
+          hence "EX u:F. au = a u"; ..;
+          thus "au <= b y";
+          proof;
+            fix u; assume "u:F"; assume "au = a u";  
+            also; have "... <= b y"; by (rule r);
+            finally; show ?thesis; .;
+          qed;
+        qed;
+      qed; 
+    qed;
+  qed;
+qed;
+
+text{* The function $h_0$ is defined as a linear extension of $h$
+to $H_0$. $h_0$ is linear. *};
+
+lemma h0_lf: 
+  "[| h0 = (\<lambda>x. let (y, a) = SOME (y, a). x = y + a <*> x0 & y:H 
+                in h y + a * xi);
+  H0 = H + lin x0; is_subspace H E; is_linearform H h; x0 ~: H; 
+  x0 : E; x0 ~= <0>; is_vectorspace E |]
+  ==> is_linearform H0 h0";
+proof -;
+  assume h0_def: 
+    "h0 = (\<lambda>x. let (y, a) = SOME (y, a). x = y + a <*> x0 & y:H 
+               in h y + a * xi)"
+      and H0_def: "H0 = H + lin x0" 
+      and vs: "is_subspace H E" "is_linearform H h" "x0 ~: H"
+        "x0 ~= <0>" "x0 : E" "is_vectorspace E";
+
+  have h0: "is_vectorspace H0"; 
+  proof (simp only: H0_def, rule vs_sum_vs);
+    show "is_subspace (lin x0) E"; ..;
+  qed; 
+
+  show ?thesis;
+  proof;
+    fix x1 x2; assume x1: "x1 : H0" and x2: "x2 : H0"; 
+
+    txt{* We now have to show that $h_0$ is linear 
+    w.~r.~t.~addition, i.~e.~
+    $h_0 \ap (x_1\plus x_2) = h_0\ap x_1 + h_0\ap x_2$
+    for $x_1, x_2\in H$. *}; 
+
+    have x1x2: "x1 + x2 : H0"; 
+      by (rule vs_add_closed, rule h0); 
+    from x1; 
+    have ex_x1: "EX y1 a1. x1 = y1 + a1 <*> x0  & y1 : H"; 
+      by (simp add: H0_def vs_sum_def lin_def) blast;
+    from x2; 
+    have ex_x2: "EX y2 a2. x2 = y2 + a2 <*> x0 & y2 : H"; 
+      by (simp add: H0_def vs_sum_def lin_def) blast;
+    from x1x2; 
+    have ex_x1x2: "EX y a. x1 + x2 = y + a <*> x0 & y : H";
+      by (simp add: H0_def vs_sum_def lin_def) force;
+
+    from ex_x1 ex_x2 ex_x1x2;
+    show "h0 (x1 + x2) = h0 x1 + h0 x2";
+    proof (elim exE conjE);
+      fix y1 y2 y a1 a2 a;
+      assume y1: "x1 = y1 + a1 <*> x0"     and y1': "y1 : H"
+         and y2: "x2 = y2 + a2 <*> x0"     and y2': "y2 : H" 
+         and y: "x1 + x2 = y + a <*> x0"   and y':  "y  : H"; 
+
+      have ya: "y1 + y2 = y & a1 + a2 = a"; 
+      proof (rule decomp_H0); 
+        show "y1 + y2 + (a1 + a2) <*> x0 = y + a <*> x0"; 
+          by (simp! add: vs_add_mult_distrib2 [of E]);
+        show "y1 + y2 : H"; ..;
+      qed;
+
+      have "h0 (x1 + x2) = h y + a * xi";
+	by (rule h0_definite);
+      also; have "... = h (y1 + y2) + (a1 + a2) * xi"; 
+        by (simp add: ya);
+      also; from vs y1' y2'; 
+      have "... = h y1 + h y2 + a1 * xi + a2 * xi"; 
+	by (simp add: linearform_add_linear [of H] 
+                      real_add_mult_distrib);
+      also; have "... = (h y1 + a1 * xi) + (h y2 + a2 * xi)"; 
+        by simp;
+      also; have "h y1 + a1 * xi = h0 x1"; 
+        by (rule h0_definite [RS sym]);
+      also; have "h y2 + a2 * xi = h0 x2"; 
+        by (rule h0_definite [RS sym]);
+      finally; show ?thesis; .;
+    qed;
+ 
+    txt{* We further have to show that $h_0$ is linear 
+    w.~r.~t.~scalar multiplication, 
+    i.~e.~ $c\in real$ $h_0\ap (c \mult x_1) = c \cdot h_0\ap x_1$
+    for $x\in H$ and real $c$. 
+    *}; 
+
+  next;  
+    fix c x1; assume x1: "x1 : H0";    
+    have ax1: "c <*> x1 : H0";
+      by (rule vs_mult_closed, rule h0);
+    from x1; have ex_x1: "EX y1 a1. x1 = y1 + a1 <*> x0 & y1 : H";
+      by (simp add: H0_def vs_sum_def lin_def) fast;
+    from x1; have ex_x: "!! x. x: H0 
+                        ==> EX y a. x = y + a <*> x0 & y : H";
+      by (simp add: H0_def vs_sum_def lin_def) fast;
+    note ex_ax1 = ex_x [of "c <*> x1", OF ax1];
+
+    with ex_x1; show "h0 (c <*> x1) = c * (h0 x1)";  
+    proof (elim exE conjE);
+      fix y1 y a1 a; 
+      assume y1: "x1 = y1 + a1 <*> x0"       and y1': "y1 : H"
+        and y: "c <*> x1 = y  + a  <*> x0"   and y':  "y  : H"; 
+
+      have ya: "c <*> y1 = y & c * a1 = a"; 
+      proof (rule decomp_H0); 
+	show "c <*> y1 + (c * a1) <*> x0 = y + a <*> x0"; 
+          by (simp! add: add: vs_add_mult_distrib1);
+        show "c <*> y1 : H"; ..;
+      qed;
+
+      have "h0 (c <*> x1) = h y + a * xi"; 
+	by (rule h0_definite);
+      also; have "... = h (c <*> y1) + (c * a1) * xi";
+        by (simp add: ya);
+      also; from vs y1'; have "... = c * h y1 + c * a1 * xi"; 
+	by (simp add: linearform_mult_linear [of H]);
+      also; from vs y1'; have "... = c * (h y1 + a1 * xi)"; 
+	by (simp add: real_add_mult_distrib2 real_mult_assoc);
+      also; have "h y1 + a1 * xi = h0 x1"; 
+        by (rule h0_definite [RS sym]);
+      finally; show ?thesis; .;
+    qed;
+  qed;
+qed;
+
+text{* $h_0$ is bounded by the quasinorm $p$. *};
+
+lemma h0_norm_pres:
+  "[| h0 = (\<lambda>x. let (y, a) = SOME (y, a). x = y + a <*> x0 & y:H 
+                in h y + a * xi);
+  H0 = H + lin x0; x0 ~: H; x0 : E; x0 ~= <0>; is_vectorspace E; 
+  is_subspace H E; is_quasinorm E p; is_linearform H h; 
+  ALL y:H. h y <= p y; (ALL y:H. - p (y + x0) - h y <= xi) 
+  & (ALL y:H. xi <= p (y + x0) - h y) |]
+   ==> ALL x:H0. h0 x <= p x"; 
+proof; 
+  assume h0_def: 
+    "h0 = (\<lambda>x. let (y, a) = SOME (y, a). x = y + a <*> x0 & y:H 
+               in (h y) + a * xi)"
+    and H0_def: "H0 = H + lin x0" 
+    and vs: "x0 ~: H" "x0 : E" "x0 ~= <0>" "is_vectorspace E" 
+            "is_subspace H E" "is_quasinorm E p" "is_linearform H h" 
+    and a:      " ALL y:H. h y <= p y";
+  presume a1: "ALL y:H. - p (y + x0) - h y <= xi";
+  presume a2: "ALL y:H. xi <= p (y + x0) - h y";
+  fix x; assume "x : H0"; 
+  have ex_x: 
+    "!! x. x : H0 ==> EX y a. x = y + a <*> x0 & y : H";
+    by (simp add: H0_def vs_sum_def lin_def) fast;
+  have "EX y a. x = y + a <*> x0 & y : H";
+    by (rule ex_x);
+  thus "h0 x <= p x";
+  proof (elim exE conjE);
+    fix y a; assume x: "x = y + a <*> x0" and y: "y : H";
+    have "h0 x = h y + a * xi";
+      by (rule h0_definite);
+
+    txt{* Now we show  
+    $h\ap y + a * xi\leq  p\ap (y\plus a \mult x_0)$ 
+    by case analysis on $a$. *};
+
+    also; have "... <= p (y + a <*> x0)";
+    proof (rule linorder_linear_split); 
+
+      assume z: "a = 0r"; 
+      with vs y a; show ?thesis; by simp;
+
+    txt {* In the case $a < 0$ we use $a_1$ with $y$ taken as
+    $\frac{y}{a}$. *};
+
+    next;
+      assume lz: "a < 0r"; hence nz: "a ~= 0r"; by simp;
+      from a1; 
+      have "- p (rinv a <*> y + x0) - h (rinv a <*> y) <= xi";
+        by (rule bspec)(simp!);
+ 
+      txt {* The thesis now follows by a short calculation. *};      
+
+      hence "a * xi 
+            <= a * (- p (rinv a <*> y + x0) - h (rinv a <*> y))";
+        by (rule real_mult_less_le_anti [OF lz]);
+      also; have "... = - a * (p (rinv a <*> y + x0)) 
+                        - a * (h (rinv a <*> y))";
+        by (rule real_mult_diff_distrib);
+      also; from lz vs y; have "- a * (p (rinv a <*> y + x0)) 
+                               = p (a <*> (rinv a <*> y + x0))";
+        by (simp add: quasinorm_mult_distrib rabs_minus_eqI2);
+      also; from nz vs y; have "... = p (y + a <*> x0)";
+        by (simp add: vs_add_mult_distrib1);
+      also; from nz vs y; have "a * (h (rinv a <*> y)) =  h y";
+        by (simp add: linearform_mult_linear [RS sym]);
+      finally; have "a * xi <= p (y + a <*> x0) - h y"; .;
+
+      hence "h y + a * xi <= h y + p (y + a <*> x0) - h y";
+        by (simp add: real_add_left_cancel_le);
+      thus ?thesis; by simp;
+
+      txt {* In the case $a > 0$ we use $a_2$ with $y$ taken
+      as $\frac{y}{a}$. *};
+    next; 
+      assume gz: "0r < a"; hence nz: "a ~= 0r"; by simp;
+      have "xi <= p (rinv a <*> y + x0) - h (rinv a <*> y)";
+        by (rule bspec [OF a2]) (simp!);
+
+      txt {* The thesis follows by a short calculation. *};
+
+      with gz; have "a * xi 
+            <= a * (p (rinv a <*> y + x0) - h (rinv a <*> y))";
+        by (rule real_mult_less_le_mono);
+      also; have "... = a * p (rinv a <*> y + x0) 
+                        - a * h (rinv a <*> y)";
+        by (rule real_mult_diff_distrib2); 
+      also; from gz vs y; 
+      have "a * p (rinv a <*> y + x0) 
+           = p (a <*> (rinv a <*> y + x0))";
+        by (simp add: quasinorm_mult_distrib rabs_eqI2);
+      also; from nz vs y; 
+      have "... = p (y + a <*> x0)";
+        by (simp add: vs_add_mult_distrib1);
+      also; from nz vs y; have "a * h (rinv a <*> y) = h y";
+        by (simp add: linearform_mult_linear [RS sym]); 
+      finally; have "a * xi <= p (y + a <*> x0) - h y"; .;
+ 
+      hence "h y + a * xi <= h y + (p (y + a <*> x0) - h y)";
+        by (simp add: real_add_left_cancel_le);
+      thus ?thesis; by simp;
+    qed;
+    also; from x; have "... = p x"; by simp;
+    finally; show ?thesis; .;
+  qed;
+qed blast+; 
+
+
+end;
\ No newline at end of file