src/HOL/Library/Graphs.thy
changeset 25314 5eaf3e8b50a4
parent 25313 98a145c9a22f
child 25315 6ff4305d2f7c
--- a/src/HOL/Library/Graphs.thy	Tue Nov 06 13:12:56 2007 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,731 +0,0 @@
-(*  Title:      HOL/Library/Graphs.thy
-    ID:         $Id$
-    Author:     Alexander Krauss, TU Muenchen
-*)
-
-header {* General Graphs as Sets *}
-
-theory Graphs
-imports Main SCT_Misc Kleene_Algebras
-begin
-
-subsection {* Basic types, Size Change Graphs *}
-
-datatype ('a, 'b) graph = 
-  Graph "('a \<times> 'b \<times> 'a) set"
-
-fun dest_graph :: "('a, 'b) graph \<Rightarrow> ('a \<times> 'b \<times> 'a) set"
-  where "dest_graph (Graph G) = G"
-
-lemma graph_dest_graph[simp]:
-  "Graph (dest_graph G) = G"
-  by (cases G) simp
-
-lemma split_graph_all:
-  "(\<And>gr. PROP P gr) \<equiv> (\<And>set. PROP P (Graph set))"
-proof
-  fix set
-  assume "\<And>gr. PROP P gr"
-  then show "PROP P (Graph set)" .
-next
-  fix gr
-  assume "\<And>set. PROP P (Graph set)"
-  then have "PROP P (Graph (dest_graph gr))" .
-  then show "PROP P gr" by simp
-qed
-
-definition 
-  has_edge :: "('n,'e) graph \<Rightarrow> 'n \<Rightarrow> 'e \<Rightarrow> 'n \<Rightarrow> bool"
-("_ \<turnstile> _ \<leadsto>\<^bsup>_\<^esup> _")
-where
-  "has_edge G n e n' = ((n, e, n') \<in> dest_graph G)"
-
-
-subsection {* Graph composition *}
-
-fun grcomp :: "('n, 'e::times) graph \<Rightarrow> ('n, 'e) graph  \<Rightarrow> ('n, 'e) graph"
-where
-  "grcomp (Graph G) (Graph H) = 
-  Graph {(p,b,q) | p b q. 
-  (\<exists>k e e'. (p,e,k)\<in>G \<and> (k,e',q)\<in>H \<and> b = e * e')}"
-
-
-declare grcomp.simps[code del]
-
-
-lemma graph_ext:
-  assumes "\<And>n e n'. has_edge G n e n' = has_edge H n e n'"
-  shows "G = H"
-  using assms
-  by (cases G, cases H) (auto simp:split_paired_all has_edge_def)
-
-
-instance graph :: (type, type) "{comm_monoid_add}"
-  graph_zero_def: "0 == Graph {}" 
-  graph_plus_def: "G + H == Graph (dest_graph G \<union> dest_graph H)"
-proof
-  fix x y z :: "('a,'b) graph"
-
-  show "x + y + z = x + (y + z)" 
-   and "x + y = y + x" 
-   and "0 + x = x"
-  unfolding graph_plus_def graph_zero_def 
-  by auto
-qed
-
-lemmas [code func del] = graph_plus_def
-
-instance graph :: (type, type) "{distrib_lattice, complete_lattice}"
-  graph_leq_def: "G \<le> H \<equiv> dest_graph G \<subseteq> dest_graph H"
-  graph_less_def: "G < H \<equiv> dest_graph G \<subset> dest_graph H"
-  "inf G H \<equiv> Graph (dest_graph G \<inter> dest_graph H)"
-  "sup G H \<equiv> G + H"
-  Inf_graph_def: "Inf \<equiv> \<lambda>Gs. Graph (\<Inter>(dest_graph ` Gs))"
-  Sup_graph_def: "Sup \<equiv> \<lambda>Gs. Graph (\<Union>(dest_graph ` Gs))"
-proof
-  fix x y z :: "('a,'b) graph"
-  fix A :: "('a, 'b) graph set"
-
-  show "(x < y) = (x \<le> y \<and> x \<noteq> y)"
-    unfolding graph_leq_def graph_less_def
-    by (cases x, cases y) auto
-
-  show "x \<le> x" unfolding graph_leq_def ..
-
-  { assume "x \<le> y" "y \<le> z" 
-    with order_trans show "x \<le> z"
-      unfolding graph_leq_def . }
-
-  { assume "x \<le> y" "y \<le> x" thus "x = y" 
-      unfolding graph_leq_def 
-      by (cases x, cases y) simp }
-
-  show "inf x y \<le> x" "inf x y \<le> y"
-    unfolding inf_graph_def graph_leq_def 
-    by auto    
-  
-  { assume "x \<le> y" "x \<le> z" thus "x \<le> inf y z"
-      unfolding inf_graph_def graph_leq_def 
-      by auto }
-
-  show "x \<le> sup x y" "y \<le> sup x y"
-    unfolding sup_graph_def graph_leq_def graph_plus_def by auto
-
-  { assume "y \<le> x" "z \<le> x" thus "sup y z \<le> x"
-      unfolding sup_graph_def graph_leq_def graph_plus_def by auto }
-  
-  show "sup x (inf y z) = inf (sup x y) (sup x z)"
-    unfolding inf_graph_def sup_graph_def graph_leq_def graph_plus_def by auto
-
-  { assume "x \<in> A" thus "Inf A \<le> x" 
-      unfolding Inf_graph_def graph_leq_def by auto }
-
-  { assume "\<And>x. x \<in> A \<Longrightarrow> z \<le> x" thus "z \<le> Inf A"
-    unfolding Inf_graph_def graph_leq_def by auto }
-
-  { assume "x \<in> A" thus "x \<le> Sup A" 
-      unfolding Sup_graph_def graph_leq_def by auto }
-
-  { assume "\<And>x. x \<in> A \<Longrightarrow> x \<le> z" thus "Sup A \<le> z"
-    unfolding Sup_graph_def graph_leq_def by auto }
-qed
-
-lemmas [code func del] = graph_leq_def graph_less_def
-  inf_graph_def sup_graph_def Inf_graph_def Sup_graph_def
-
-lemma in_grplus:
-  "has_edge (G + H) p b q = (has_edge G p b q \<or> has_edge H p b q)"
-  by (cases G, cases H, auto simp:has_edge_def graph_plus_def)
-
-lemma in_grzero:
-  "has_edge 0 p b q = False"
-  by (simp add:graph_zero_def has_edge_def)
-
-
-subsubsection {* Multiplicative Structure *}
-
-instance graph :: (type, times) mult_zero
-  graph_mult_def: "G * H == grcomp G H" 
-proof
-  fix a :: "('a, 'b) graph"
-
-  show "0 * a = 0" 
-    unfolding graph_mult_def graph_zero_def
-    by (cases a) (simp add:grcomp.simps)
-  show "a * 0 = 0" 
-    unfolding graph_mult_def graph_zero_def
-    by (cases a) (simp add:grcomp.simps)
-qed
-
-lemmas [code func del] = graph_mult_def
-
-instance graph :: (type, one) one 
-  graph_one_def: "1 == Graph { (x, 1, x) |x. True}" ..
-
-lemma in_grcomp:
-  "has_edge (G * H) p b q
-  = (\<exists>k e e'. has_edge G p e k \<and> has_edge H k e' q \<and> b = e * e')"
-  by (cases G, cases H) (auto simp:graph_mult_def has_edge_def image_def)
-
-lemma in_grunit:
-  "has_edge 1 p b q = (p = q \<and> b = 1)"
-  by (auto simp:graph_one_def has_edge_def)
-
-instance graph :: (type, semigroup_mult) semigroup_mult
-proof
-  fix G1 G2 G3 :: "('a,'b) graph"
-  
-  show "G1 * G2 * G3 = G1 * (G2 * G3)"
-  proof (rule graph_ext, rule trans)
-    fix p J q
-    show "has_edge ((G1 * G2) * G3) p J q =
-      (\<exists>G i H j I.
-      has_edge G1 p G i
-      \<and> has_edge G2 i H j
-      \<and> has_edge G3 j I q
-      \<and> J = (G * H) * I)"
-      by (simp only:in_grcomp) blast
-    show "\<dots> = has_edge (G1 * (G2 * G3)) p J q"
-      by (simp only:in_grcomp mult_assoc) blast
-  qed
-qed
-
-fun grpow :: "nat \<Rightarrow> ('a::type, 'b::monoid_mult) graph \<Rightarrow> ('a, 'b) graph"
-where
-  "grpow 0 A = 1"
-| "grpow (Suc n) A = A * (grpow n A)"
-
-instance graph :: (type, monoid_mult) 
-  "{semiring_1,idem_add,recpower,star}"
-  graph_pow_def: "A ^ n == grpow n A"
-  graph_star_def: "star G == (SUP n. G ^ n)" 
-proof
-  fix a b c :: "('a, 'b) graph"
-  
-  show "1 * a = a" 
-    by (rule graph_ext) (auto simp:in_grcomp in_grunit)
-  show "a * 1 = a"
-    by (rule graph_ext) (auto simp:in_grcomp in_grunit)
-
-  show "(a + b) * c = a * c + b * c"
-    by (rule graph_ext, simp add:in_grcomp in_grplus) blast
-
-  show "a * (b + c) = a * b + a * c"
-    by (rule graph_ext, simp add:in_grcomp in_grplus) blast
-
-  show "(0::('a,'b) graph) \<noteq> 1" unfolding graph_zero_def graph_one_def
-    by simp
-
-  show "a + a = a" unfolding graph_plus_def by simp
-  
-  show "a ^ 0 = 1" "\<And>n. a ^ (Suc n) = a * a ^ n"
-    unfolding graph_pow_def by simp_all
-qed
-
-lemma graph_leqI:
-  assumes "\<And>n e n'. has_edge G n e n' \<Longrightarrow> has_edge H n e n'"
-  shows "G \<le> H"
-  using assms
-  unfolding graph_leq_def has_edge_def
-  by auto
-
-lemma in_graph_plusE:
-  assumes "has_edge (G + H) n e n'"
-  assumes "has_edge G n e n' \<Longrightarrow> P"
-  assumes "has_edge H n e n' \<Longrightarrow> P"
-  shows P
-  using assms
-  by (auto simp: in_grplus)
-
-lemma in_graph_compE:
-  assumes GH: "has_edge (G * H) n e n'"
-  obtains e1 k e2 
-  where "has_edge G n e1 k" "has_edge H k e2 n'" "e = e1 * e2"
-  using GH
-  by (auto simp: in_grcomp)
-
-lemma 
-  assumes "x \<in> S k"
-  shows "x \<in> (\<Union>k. S k)"
-  using assms by blast
-
-lemma graph_union_least:
-  assumes "\<And>n. Graph (G n) \<le> C"
-  shows "Graph (\<Union>n. G n) \<le> C"
-  using assms unfolding graph_leq_def
-  by auto
-
-lemma Sup_graph_eq:
-  "(SUP n. Graph (G n)) = Graph (\<Union>n. G n)"
-proof (rule order_antisym)
-  show "(SUP n. Graph (G n)) \<le> Graph (\<Union>n. G n)"
-    by  (rule SUP_leI) (auto simp add: graph_leq_def)
-
-  show "Graph (\<Union>n. G n) \<le> (SUP n. Graph (G n))"
-  by (rule graph_union_least, rule le_SUPI', rule) 
-qed
-
-lemma has_edge_leq: "has_edge G p b q = (Graph {(p,b,q)} \<le> G)"
-  unfolding has_edge_def graph_leq_def
-  by (cases G) simp
-
-
-lemma Sup_graph_eq2:
-  "(SUP n. G n) = Graph (\<Union>n. dest_graph (G n))"
-  using Sup_graph_eq[of "\<lambda>n. dest_graph (G n)", simplified]
-  by simp
-
-lemma in_SUP:
-  "has_edge (SUP x. Gs x) p b q = (\<exists>x. has_edge (Gs x) p b q)"
-  unfolding Sup_graph_eq2 has_edge_leq graph_leq_def
-  by simp
-
-instance graph :: (type, monoid_mult) kleene_by_complete_lattice
-proof
-  fix a b c :: "('a, 'b) graph"
-
-  show "a \<le> b \<longleftrightarrow> a + b = b" unfolding graph_leq_def graph_plus_def
-    by (cases a, cases b) auto
-
-  from order_less_le show "a < b \<longleftrightarrow> a \<le> b \<and> a \<noteq> b" .
-
-  show "a * star b * c = (SUP n. a * b ^ n * c)"
-    unfolding graph_star_def
-    by (rule graph_ext) (force simp:in_SUP in_grcomp)
-qed
-
-
-lemma in_star: 
-  "has_edge (star G) a x b = (\<exists>n. has_edge (G ^ n) a x b)"
-  by (auto simp:graph_star_def in_SUP)
-
-lemma tcl_is_SUP:
-  "tcl (G::('a::type, 'b::monoid_mult) graph) =
-  (SUP n. G ^ (Suc n))"
-  unfolding tcl_def 
-  using star_cont[of 1 G G]
-  by (simp add:power_Suc power_commutes)
-
-
-lemma in_tcl: 
-  "has_edge (tcl G) a x b = (\<exists>n>0. has_edge (G ^ n) a x b)"
-  apply (auto simp: tcl_is_SUP in_SUP)
-  apply (rule_tac x = "n - 1" in exI, auto)
-  done
-
-
-subsection {* Infinite Paths *}
-
-types ('n, 'e) ipath = "('n \<times> 'e) sequence"
-
-definition has_ipath :: "('n, 'e) graph \<Rightarrow> ('n, 'e) ipath \<Rightarrow> bool"
-where
-  "has_ipath G p = 
-  (\<forall>i. has_edge G (fst (p i)) (snd (p i)) (fst (p (Suc i))))"
-
-
-subsection {* Finite Paths *}
-
-types ('n, 'e) fpath = "('n \<times> ('e \<times> 'n) list)"
-
-inductive  has_fpath :: "('n, 'e) graph \<Rightarrow> ('n, 'e) fpath \<Rightarrow> bool" 
-  for G :: "('n, 'e) graph"
-where
-  has_fpath_empty: "has_fpath G (n, [])"
-| has_fpath_join: "\<lbrakk>G \<turnstile> n \<leadsto>\<^bsup>e\<^esup> n'; has_fpath G (n', es)\<rbrakk> \<Longrightarrow> has_fpath G (n, (e, n')#es)"
-
-definition 
-  "end_node p = 
-  (if snd p = [] then fst p else snd (snd p ! (length (snd p) - 1)))"
-
-definition path_nth :: "('n, 'e) fpath \<Rightarrow> nat \<Rightarrow> ('n \<times> 'e \<times> 'n)"
-where
-  "path_nth p k = (if k = 0 then fst p else snd (snd p ! (k - 1)), snd p ! k)"
-
-lemma endnode_nth:
-  assumes "length (snd p) = Suc k"
-  shows "end_node p = snd (snd (path_nth p k))"
-  using assms unfolding end_node_def path_nth_def
-  by auto
-
-lemma path_nth_graph:
-  assumes "k < length (snd p)"
-  assumes "has_fpath G p"
-  shows "(\<lambda>(n,e,n'). has_edge G n e n') (path_nth p k)"
-using assms
-proof (induct k arbitrary: p)
-  case 0 thus ?case 
-    unfolding path_nth_def by (auto elim:has_fpath.cases)
-next
-  case (Suc k p)
-
-  from `has_fpath G p` show ?case 
-  proof (rule has_fpath.cases)
-    case goal1 with Suc show ?case by simp
-  next
-    fix n e n' es
-    assume st: "p = (n, (e, n') # es)"
-       "G \<turnstile> n \<leadsto>\<^bsup>e\<^esup> n'"
-       "has_fpath G (n', es)"
-    with Suc
-    have "(\<lambda>(n, b, a). G \<turnstile> n \<leadsto>\<^bsup>b\<^esup> a) (path_nth (n', es) k)" by simp
-    with st show ?thesis by (cases k, auto simp:path_nth_def)
-  qed
-qed
-
-lemma path_nth_connected:
-  assumes "Suc k < length (snd p)"
-  shows "fst (path_nth p (Suc k)) = snd (snd (path_nth p k))"
-  using assms
-  unfolding path_nth_def
-  by auto
-
-definition path_loop :: "('n, 'e) fpath \<Rightarrow> ('n, 'e) ipath" ("omega")
-where
-  "omega p \<equiv> (\<lambda>i. (\<lambda>(n,e,n'). (n,e)) (path_nth p (i mod (length (snd p)))))"
-
-lemma fst_p0: "fst (path_nth p 0) = fst p"
-  unfolding path_nth_def by simp
-
-lemma path_loop_connect:
-  assumes "fst p = end_node p"
-  and "0 < length (snd p)" (is "0 < ?l")
-  shows "fst (path_nth p (Suc i mod (length (snd p))))
-  = snd (snd (path_nth p (i mod length (snd p))))"
-  (is "\<dots> = snd (snd (path_nth p ?k))")
-proof -
-  from `0 < ?l` have "i mod ?l < ?l" (is "?k < ?l")
-    by simp
-
-  show ?thesis 
-  proof (cases "Suc ?k < ?l")
-    case True
-    hence "Suc ?k \<noteq> ?l" by simp
-    with path_nth_connected[OF True]
-    show ?thesis
-      by (simp add:mod_Suc)
-  next
-    case False 
-    with `?k < ?l` have wrap: "Suc ?k = ?l" by simp
-
-    hence "fst (path_nth p (Suc i mod ?l)) = fst (path_nth p 0)" 
-      by (simp add: mod_Suc)
-    also from fst_p0 have "\<dots> = fst p" .
-    also have "\<dots> = end_node p" by fact
-    also have "\<dots> = snd (snd (path_nth p ?k))" 
-      by (auto simp: endnode_nth wrap)
-    finally show ?thesis .
-  qed
-qed
-
-lemma path_loop_graph:
-  assumes "has_fpath G p"
-  and loop: "fst p = end_node p"
-  and nonempty: "0 < length (snd p)" (is "0 < ?l")
-  shows "has_ipath G (omega p)"
-proof -
-  {
-    fix i 
-    from `0 < ?l` have "i mod ?l < ?l" (is "?k < ?l")
-      by simp
-    from this and `has_fpath G p`
-    have pk_G: "(\<lambda>(n,e,n'). has_edge G n e n') (path_nth p ?k)"
-      by (rule path_nth_graph)
-
-    from path_loop_connect[OF loop nonempty] pk_G
-    have "has_edge G (fst (omega p i)) (snd (omega p i)) (fst (omega p (Suc i)))"
-      unfolding path_loop_def has_edge_def split_def
-      by simp
-  }
-  then show ?thesis by (auto simp:has_ipath_def)
-qed
-
-definition prod :: "('n, 'e::monoid_mult) fpath \<Rightarrow> 'e"
-where
-  "prod p = foldr (op *) (map fst (snd p)) 1"
-
-lemma prod_simps[simp]:
-  "prod (n, []) = 1"
-  "prod (n, (e,n')#es) = e * (prod (n',es))"
-unfolding prod_def
-by simp_all
-
-lemma power_induces_path:
-  assumes a: "has_edge (A ^ k) n G m"
-  obtains p 
-    where "has_fpath A p"
-      and "n = fst p" "m = end_node p"
-      and "G = prod p"
-      and "k = length (snd p)"
-  using a
-proof (induct k arbitrary:m n G thesis)
-  case (0 m n G)
-  let ?p = "(n, [])"
-  from 0 have "has_fpath A ?p" "m = end_node ?p" "G = prod ?p"
-    by (auto simp:in_grunit end_node_def intro:has_fpath.intros)
-  thus ?case using 0 by (auto simp:end_node_def)
-next
-  case (Suc k m n G)
-  hence "has_edge (A * A ^ k) n G m" 
-    by (simp add:power_Suc power_commutes)
-  then obtain G' H j where 
-    a_A: "has_edge A n G' j"
-    and H_pow: "has_edge (A ^ k) j H m"
-    and [simp]: "G = G' * H"
-    by (auto simp:in_grcomp) 
-
-  from H_pow and Suc
-  obtain p
-    where p_path: "has_fpath A p"
-    and [simp]: "j = fst p" "m = end_node p" "H = prod p" 
-    "k = length (snd p)"
-    by blast
-
-  let ?p' = "(n, (G', j)#snd p)"
-  from a_A and p_path
-  have "has_fpath A ?p'" "m = end_node ?p'" "G = prod ?p'"
-    by (auto simp:end_node_def nth.simps intro:has_fpath.intros split:nat.split)
-  thus ?case using Suc by auto
-qed
-
-
-subsection {* Sub-Paths *}
-
-definition sub_path :: "('n, 'e) ipath \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ('n, 'e) fpath"
-("(_\<langle>_,_\<rangle>)")
-where
-  "p\<langle>i,j\<rangle> =
-  (fst (p i), map (\<lambda>k. (snd (p k), fst (p (Suc k)))) [i ..< j])"
-
-
-lemma sub_path_is_path: 
-  assumes ipath: "has_ipath G p"
-  assumes l: "i \<le> j"
-  shows "has_fpath G (p\<langle>i,j\<rangle>)"
-  using l
-proof (induct i rule:inc_induct)
-  case base show ?case by (auto simp:sub_path_def intro:has_fpath.intros)
-next
-  case (step i)
-  with ipath upt_rec[of i j]
-  show ?case
-    by (auto simp:sub_path_def has_ipath_def intro:has_fpath.intros)
-qed
-
-
-lemma sub_path_start[simp]:
-  "fst (p\<langle>i,j\<rangle>) = fst (p i)"
-  by (simp add:sub_path_def)
-
-lemma nth_upto[simp]: "k < j - i \<Longrightarrow> [i ..< j] ! k = i + k"
-  by (induct k) auto
-
-lemma sub_path_end[simp]:
-  "i < j \<Longrightarrow> end_node (p\<langle>i,j\<rangle>) = fst (p j)"
-  by (auto simp:sub_path_def end_node_def)
-
-lemma foldr_map: "foldr f (map g xs) = foldr (f o g) xs"
-  by (induct xs) auto
-
-lemma upto_append[simp]:
-  assumes "i \<le> j" "j \<le> k"
-  shows "[ i ..< j ] @ [j ..< k] = [i ..< k]"
-  using assms and upt_add_eq_append[of i j "k - j"]
-  by simp
-
-lemma foldr_monoid: "foldr (op *) xs 1 * foldr (op *) ys 1
-  = foldr (op *) (xs @ ys) (1::'a::monoid_mult)"
-  by (induct xs) (auto simp:mult_assoc)
-
-lemma sub_path_prod:
-  assumes "i < j"
-  assumes "j < k"
-  shows "prod (p\<langle>i,k\<rangle>) = prod (p\<langle>i,j\<rangle>) * prod (p\<langle>j,k\<rangle>)"
-  using assms
-  unfolding prod_def sub_path_def
-  by (simp add:map_compose[symmetric] comp_def)
-   (simp only:foldr_monoid map_append[symmetric] upto_append)
-
-
-lemma path_acgpow_aux:
-  assumes "length es = l"
-  assumes "has_fpath G (n,es)"
-  shows "has_edge (G ^ l) n (prod (n,es)) (end_node (n,es))"
-using assms
-proof (induct l arbitrary:n es)
-  case 0 thus ?case
-    by (simp add:in_grunit end_node_def) 
-next
-  case (Suc l n es)
-  hence "es \<noteq> []" by auto
-  let ?n' = "snd (hd es)"
-  let ?es' = "tl es"
-  let ?e = "fst (hd es)"
-
-  from Suc have len: "length ?es' = l" by auto
-
-  from Suc
-  have [simp]: "end_node (n, es) = end_node (?n', ?es')"
-    by (cases es) (auto simp:end_node_def nth.simps split:nat.split)
-
-  from `has_fpath G (n,es)`
-  have "has_fpath G (?n', ?es')"
-    by (rule has_fpath.cases) (auto intro:has_fpath.intros)
-  with Suc len
-  have "has_edge (G ^ l) ?n' (prod (?n', ?es')) (end_node (?n', ?es'))"
-    by auto
-  moreover
-  from `es \<noteq> []`
-  have "prod (n, es) = ?e * (prod (?n', ?es'))"
-    by (cases es) auto
-  moreover
-  from `has_fpath G (n,es)` have c:"has_edge G n ?e ?n'"
-    by (rule has_fpath.cases) (insert `es \<noteq> []`, auto)
-
-  ultimately
-  show ?case
-     unfolding power_Suc 
-     by (auto simp:in_grcomp)
-qed
-
-
-lemma path_acgpow:
-   "has_fpath G p
-  \<Longrightarrow> has_edge (G ^ length (snd p)) (fst p) (prod p) (end_node p)"
-by (cases p)
-   (rule path_acgpow_aux[of "snd p" "length (snd p)" _ "fst p", simplified])
-
-
-lemma star_paths:
-  "has_edge (star G) a x b =
-   (\<exists>p. has_fpath G p \<and> a = fst p \<and> b = end_node p \<and> x = prod p)"
-proof
-  assume "has_edge (star G) a x b"
-  then obtain n where pow: "has_edge (G ^ n) a x b"
-    by (auto simp:in_star)
-
-  then obtain p where
-    "has_fpath G p" "a = fst p" "b = end_node p" "x = prod p"
-    by (rule power_induces_path)
-
-  thus "\<exists>p. has_fpath G p \<and> a = fst p \<and> b = end_node p \<and> x = prod p"
-    by blast
-next
-  assume "\<exists>p. has_fpath G p \<and> a = fst p \<and> b = end_node p \<and> x = prod p"
-  then obtain p where
-    "has_fpath G p" "a = fst p" "b = end_node p" "x = prod p"
-    by blast
-
-  hence "has_edge (G ^ length (snd p)) a x b"
-    by (auto intro:path_acgpow)
-
-  thus "has_edge (star G) a x b"
-    by (auto simp:in_star)
-qed
-
-
-lemma plus_paths:
-  "has_edge (tcl G) a x b =
-   (\<exists>p. has_fpath G p \<and> a = fst p \<and> b = end_node p \<and> x = prod p \<and> 0 < length (snd p))"
-proof
-  assume "has_edge (tcl G) a x b"
-  
-  then obtain n where pow: "has_edge (G ^ n) a x b" and "0 < n"
-    by (auto simp:in_tcl)
-
-  from pow obtain p where
-    "has_fpath G p" "a = fst p" "b = end_node p" "x = prod p"
-    "n = length (snd p)"
-    by (rule power_induces_path)
-
-  with `0 < n`
-  show "\<exists>p. has_fpath G p \<and> a = fst p \<and> b = end_node p \<and> x = prod p \<and> 0 < length (snd p) "
-    by blast
-next
-  assume "\<exists>p. has_fpath G p \<and> a = fst p \<and> b = end_node p \<and> x = prod p
-    \<and> 0 < length (snd p)"
-  then obtain p where
-    "has_fpath G p" "a = fst p" "b = end_node p" "x = prod p"
-    "0 < length (snd p)"
-    by blast
-
-  hence "has_edge (G ^ length (snd p)) a x b"
-    by (auto intro:path_acgpow)
-
-  with `0 < length (snd p)`
-  show "has_edge (tcl G) a x b"
-    by (auto simp:in_tcl)
-qed
-
-
-definition
-  "contract s p = 
-  (\<lambda>i. (fst (p (s i)), prod (p\<langle>s i,s (Suc i)\<rangle>)))"
-
-lemma ipath_contract:
-  assumes [simp]: "increasing s"
-  assumes ipath: "has_ipath G p"
-  shows "has_ipath (tcl G) (contract s p)"
-  unfolding has_ipath_def 
-proof
-  fix i
-  let ?p = "p\<langle>s i,s (Suc i)\<rangle>"
-
-  from increasing_strict 
-	have "fst (p (s (Suc i))) = end_node ?p" by simp
-  moreover
-  from increasing_strict[of s i "Suc i"] have "snd ?p \<noteq> []"
-    by (simp add:sub_path_def)
-  moreover
-  from ipath increasing_weak[of s] have "has_fpath G ?p"
-    by (rule sub_path_is_path) auto
-  ultimately
-  show "has_edge (tcl G) 
-    (fst (contract s p i)) (snd (contract s p i)) (fst (contract s p (Suc i)))"
-    unfolding contract_def plus_paths
-    by (intro exI) auto
-qed
-
-lemma prod_unfold:
-  "i < j \<Longrightarrow> prod (p\<langle>i,j\<rangle>) 
-  = snd (p i) * prod (p\<langle>Suc i, j\<rangle>)"
-  unfolding prod_def
-  by (simp add:sub_path_def upt_rec[of "i" j])
-
-
-lemma sub_path_loop:
-  assumes "0 < k"
-  assumes k: "k = length (snd loop)"
-  assumes loop: "fst loop = end_node loop"
-  shows "(omega loop)\<langle>k * i,k * Suc i\<rangle> = loop" (is "?\<omega> = loop")
-proof (rule prod_eqI)
-  show "fst ?\<omega> = fst loop"
-    by (auto simp:path_loop_def path_nth_def split_def k)
-
-  show "snd ?\<omega> = snd loop"
-  proof (rule nth_equalityI[rule_format])
-    show leneq: "length (snd ?\<omega>) = length (snd loop)"
-      unfolding sub_path_def k by simp
-
-    fix j assume "j < length (snd (?\<omega>))"
-    with leneq and k have "j < k" by simp
-
-    have a: "\<And>i. fst (path_nth loop (Suc i mod k))
-      = snd (snd (path_nth loop (i mod k)))"
-      unfolding k
-      apply (rule path_loop_connect[OF loop])
-      using `0 < k` and k
-      apply auto
-      done
-
-    from `j < k` 
-    show "snd ?\<omega> ! j = snd loop ! j"
-      unfolding sub_path_def
-      apply (simp add:path_loop_def split_def add_ac)
-      apply (simp add:a k[symmetric])
-      apply (simp add:path_nth_def)
-      done
-  qed
-qed
-
-end