src/HOL/SizeChange/Correctness.thy
changeset 25314 5eaf3e8b50a4
child 26513 6f306c8c2c54
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/SizeChange/Correctness.thy	Tue Nov 06 17:44:53 2007 +0100
@@ -0,0 +1,1451 @@
+(*  Title:      HOL/Library/SCT_Theorem.thy
+    ID:         $Id$
+    Author:     Alexander Krauss, TU Muenchen
+*)
+
+header "Proof of the Size-Change Principle"
+
+theory Correctness
+imports Main Ramsey Misc_Tools Criterion
+begin
+
+subsection {* Auxiliary definitions *}
+
+definition is_thread :: "nat \<Rightarrow> 'a sequence \<Rightarrow> ('a, 'a scg) ipath \<Rightarrow> bool"
+where
+  "is_thread n \<theta> p = (\<forall>i\<ge>n. eqlat p \<theta> i)"
+
+definition is_fthread :: 
+  "'a sequence \<Rightarrow> ('a, 'a scg) ipath \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
+where
+  "is_fthread \<theta> mp i j = (\<forall>k\<in>{i..<j}. eqlat mp \<theta> k)"
+
+definition is_desc_fthread ::
+  "'a sequence \<Rightarrow> ('a, 'a scg) ipath \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
+where
+  "is_desc_fthread \<theta> mp i j = 
+  (is_fthread \<theta> mp i j \<and>
+  (\<exists>k\<in>{i..<j}. descat mp \<theta> k))"
+
+definition
+  "has_fth p i j n m = 
+  (\<exists>\<theta>. is_fthread \<theta> p i j \<and> \<theta> i = n \<and> \<theta> j = m)"
+
+definition
+  "has_desc_fth p i j n m = 
+  (\<exists>\<theta>. is_desc_fthread \<theta> p i j \<and> \<theta> i = n \<and> \<theta> j = m)"
+
+
+subsection {* Everything is finite *}
+
+lemma finite_range:
+  fixes f :: "nat \<Rightarrow> 'a"
+  assumes fin: "finite (range f)"
+  shows "\<exists>x. \<exists>\<^sub>\<infinity>i. f i = x"
+proof (rule classical)
+  assume "\<not>(\<exists>x. \<exists>\<^sub>\<infinity>i. f i = x)"
+  hence "\<forall>x. \<exists>j. \<forall>i>j. f i \<noteq> x"
+    unfolding INF_nat by blast
+  with choice
+  have "\<exists>j. \<forall>x. \<forall>i>(j x). f i \<noteq> x" .
+  then obtain j where 
+    neq: "\<And>x i. j x < i \<Longrightarrow> f i \<noteq> x" by blast
+
+  from fin have "finite (range (j o f))" 
+    by (auto simp:comp_def)
+  with finite_nat_bounded
+  obtain m where "range (j o f) \<subseteq> {..<m}" by blast
+  hence "j (f m) < m" unfolding comp_def by auto
+
+  with neq[of "f m" m] show ?thesis by blast
+qed
+
+lemma finite_range_ignore_prefix:
+  fixes f :: "nat \<Rightarrow> 'a"
+  assumes fA: "finite A"
+  assumes inA: "\<forall>x\<ge>n. f x \<in> A"
+  shows "finite (range f)"
+proof -
+  have a: "UNIV = {0 ..< (n::nat)} \<union> { x. n \<le> x }" by auto
+  have b: "range f = f ` {0 ..< n} \<union> f ` { x. n \<le> x }" 
+    (is "\<dots> = ?A \<union> ?B")
+    by (unfold a) (simp add:image_Un)
+  
+  have "finite ?A" by (rule finite_imageI) simp
+  moreover
+  from inA have "?B \<subseteq> A" by auto
+  from this fA have "finite ?B" by (rule finite_subset)
+  ultimately show ?thesis using b by simp
+qed
+
+
+
+
+definition 
+  "finite_graph G = finite (dest_graph G)"
+definition 
+  "all_finite G = (\<forall>n H m. has_edge G n H m \<longrightarrow> finite_graph H)"
+definition
+  "finite_acg A = (finite_graph A \<and> all_finite A)"
+definition 
+  "nodes G = fst ` dest_graph G \<union> snd ` snd ` dest_graph G"
+definition 
+  "edges G = fst ` snd ` dest_graph G"
+definition 
+  "smallnodes G = \<Union>(nodes ` edges G)"
+
+lemma thread_image_nodes:
+  assumes th: "is_thread n \<theta> p"
+  shows "\<forall>i\<ge>n. \<theta> i \<in> nodes (snd (p i))"
+using prems
+unfolding is_thread_def has_edge_def nodes_def
+by force
+
+lemma finite_nodes: "finite_graph G \<Longrightarrow> finite (nodes G)"
+  unfolding finite_graph_def nodes_def
+  by auto
+
+lemma nodes_subgraph: "A \<le> B \<Longrightarrow> nodes A \<subseteq> nodes B"
+  unfolding graph_leq_def nodes_def
+  by auto
+
+lemma finite_edges: "finite_graph G \<Longrightarrow> finite (edges G)"
+  unfolding finite_graph_def edges_def
+  by auto
+
+lemma edges_sum[simp]: "edges (A + B) = edges A \<union> edges B"
+  unfolding edges_def graph_plus_def
+  by auto
+
+lemma nodes_sum[simp]: "nodes (A + B) = nodes A \<union> nodes B"
+  unfolding nodes_def graph_plus_def
+  by auto
+
+lemma finite_acg_subset:
+  "A \<le> B \<Longrightarrow> finite_acg B \<Longrightarrow> finite_acg A"
+  unfolding finite_acg_def finite_graph_def all_finite_def
+  has_edge_def graph_leq_def
+  by (auto elim:finite_subset)
+
+lemma scg_finite: 
+  fixes G :: "'a scg"
+  assumes fin: "finite (nodes G)"
+  shows "finite_graph G"
+  unfolding finite_graph_def
+proof (rule finite_subset)
+  show "dest_graph G \<subseteq> nodes G \<times> UNIV \<times> nodes G" (is "_ \<subseteq> ?P")
+    unfolding nodes_def
+    by force
+  show "finite ?P"
+    by (intro finite_cartesian_product fin finite)
+qed
+
+lemma smallnodes_sum[simp]: 
+  "smallnodes (A + B) = smallnodes A \<union> smallnodes B"
+  unfolding smallnodes_def 
+  by auto
+
+lemma in_smallnodes:
+  fixes A :: "'a acg"
+  assumes e: "has_edge A x G y"
+  shows "nodes G \<subseteq> smallnodes A"
+proof -
+  have "fst (snd (x, G, y)) \<in> fst ` snd  ` dest_graph A"
+    unfolding has_edge_def
+    by (rule imageI)+ (rule e[unfolded has_edge_def])
+  then have "G \<in> edges A" 
+    unfolding edges_def by simp
+  thus ?thesis
+    unfolding smallnodes_def
+    by blast
+qed
+
+lemma finite_smallnodes:
+  assumes fA: "finite_acg A"
+  shows "finite (smallnodes A)"
+  unfolding smallnodes_def edges_def
+proof 
+  from fA
+  show "finite (nodes ` fst ` snd ` dest_graph A)"
+    unfolding finite_acg_def finite_graph_def
+    by simp
+  
+  fix M assume "M \<in> nodes ` fst ` snd ` dest_graph A"
+  then obtain n G m  
+    where M: "M = nodes G" and nGm: "(n,G,m) \<in> dest_graph A"
+    by auto
+  
+  from fA
+  have "all_finite A" unfolding finite_acg_def by simp
+  with nGm have "finite_graph G" 
+    unfolding all_finite_def has_edge_def by auto
+  with finite_nodes 
+  show "finite M" 
+    unfolding finite_graph_def M .
+qed
+
+lemma nodes_tcl:
+  "nodes (tcl A) = nodes A"
+proof
+  show "nodes A \<subseteq> nodes (tcl A)"
+    apply (rule nodes_subgraph)
+    by (subst tcl_unfold_right) simp
+
+  show "nodes (tcl A) \<subseteq> nodes A"
+  proof 
+    fix x assume "x \<in> nodes (tcl A)"
+    then obtain z G y
+      where z: "z \<in> dest_graph (tcl A)"
+      and dis: "z = (x, G, y) \<or> z = (y, G, x)"
+      unfolding nodes_def
+      by auto force+
+
+    from dis
+    show "x \<in> nodes A"
+    proof
+      assume "z = (x, G, y)"
+      with z have "has_edge (tcl A) x G y" unfolding has_edge_def by simp
+      then obtain n where "n > 0 " and An: "has_edge (A ^ n) x G y"
+        unfolding in_tcl by auto
+      then obtain n' where "n = Suc n'" by (cases n, auto)
+      hence "A ^ n = A * A ^ n'" by (simp add:power_Suc)
+      with An obtain e k 
+        where "has_edge A x e k" by (auto simp:in_grcomp)
+      thus "x \<in> nodes A" unfolding has_edge_def nodes_def 
+        by force
+    next
+      assume "z = (y, G, x)"
+      with z have "has_edge (tcl A) y G x" unfolding has_edge_def by simp
+      then obtain n where "n > 0 " and An: "has_edge (A ^ n) y G x"
+        unfolding in_tcl by auto
+      then obtain n' where "n = Suc n'" by (cases n, auto)
+      hence "A ^ n = A ^ n' * A" by (simp add:power_Suc power_commutes)
+      with An obtain e k 
+        where "has_edge A k e x" by (auto simp:in_grcomp)
+      thus "x \<in> nodes A" unfolding has_edge_def nodes_def 
+        by force
+    qed
+  qed
+qed
+
+lemma smallnodes_tcl: 
+  fixes A :: "'a acg"
+  shows "smallnodes (tcl A) = smallnodes A"
+proof (intro equalityI subsetI)
+  fix n assume "n \<in> smallnodes (tcl A)"
+  then obtain x G y where edge: "has_edge (tcl A) x G y" 
+    and "n \<in> nodes G"
+    unfolding smallnodes_def edges_def has_edge_def 
+    by auto
+  
+  from `n \<in> nodes G`
+  have "n \<in> fst ` dest_graph G \<or> n \<in> snd ` snd ` dest_graph G"
+    (is "?A \<or> ?B")
+    unfolding nodes_def by blast
+  thus "n \<in> smallnodes A"
+  proof
+    assume ?A
+    then obtain m e where A: "has_edge G n e m"
+      unfolding has_edge_def by auto
+
+    have "tcl A = A * star A"
+      unfolding tcl_def
+      by (simp add: star_commute[of A A A, simplified])
+
+    with edge
+    have "has_edge (A * star A) x G y" by simp
+    then obtain H H' z
+      where AH: "has_edge A x H z" and G: "G = H * H'"
+      by (auto simp:in_grcomp)
+    from A
+    obtain m' e' where "has_edge H n e' m'"
+      by (auto simp:G in_grcomp)
+    hence "n \<in> nodes H" unfolding nodes_def has_edge_def 
+      by force
+    with in_smallnodes[OF AH] show "n \<in> smallnodes A" ..
+  next
+    assume ?B
+    then obtain m e where B: "has_edge G m e n"
+      unfolding has_edge_def by auto
+
+    with edge
+    have "has_edge (star A * A) x G y" by (simp add:tcl_def)
+    then obtain H H' z
+      where AH': "has_edge A z H' y" and G: "G = H * H'"
+      by (auto simp:in_grcomp)
+    from B
+    obtain m' e' where "has_edge H' m' e' n"
+      by (auto simp:G in_grcomp)
+    hence "n \<in> nodes H'" unfolding nodes_def has_edge_def 
+      by force
+    with in_smallnodes[OF AH'] show "n \<in> smallnodes A" ..
+  qed
+next
+  fix x assume "x \<in> smallnodes A"
+  then show "x \<in> smallnodes (tcl A)"
+    by (subst tcl_unfold_right) simp
+qed
+
+lemma finite_nodegraphs:
+  assumes F: "finite F"
+  shows "finite { G::'a scg. nodes G \<subseteq> F }" (is "finite ?P")
+proof (rule finite_subset)
+  show "?P \<subseteq> Graph ` (Pow (F \<times> UNIV \<times> F))" (is "?P \<subseteq> ?Q")
+  proof
+    fix x assume xP: "x \<in> ?P"
+    obtain S where x[simp]: "x = Graph S"
+      by (cases x) auto
+    from xP
+    show "x \<in> ?Q"
+      apply (simp add:nodes_def)
+      apply (rule imageI)
+      apply (rule PowI)
+      apply force
+      done
+  qed
+  show "finite ?Q"
+    by (auto intro:finite_imageI finite_cartesian_product F finite)
+qed
+
+lemma finite_graphI:
+  fixes A :: "'a acg"
+  assumes fin: "finite (nodes A)" "finite (smallnodes A)"
+  shows "finite_graph A"
+proof -
+  obtain S where A[simp]: "A = Graph S"
+    by (cases A) auto
+
+  have "finite S" 
+  proof (rule finite_subset)
+    show "S \<subseteq> nodes A \<times> { G::'a scg. nodes G \<subseteq> smallnodes A } \<times> nodes A"
+      (is "S \<subseteq> ?T")
+    proof
+      fix x assume xS: "x \<in> S"
+      obtain a b c where x[simp]: "x = (a, b, c)"
+        by (cases x) auto
+
+      then have edg: "has_edge A a b c"
+        unfolding has_edge_def using xS
+        by simp
+
+      hence "a \<in> nodes A" "c \<in> nodes A"
+        unfolding nodes_def has_edge_def by force+
+      moreover
+      from edg have "nodes b \<subseteq> smallnodes A" by (rule in_smallnodes)
+      hence "b \<in> { G :: 'a scg. nodes G \<subseteq> smallnodes A }" by simp
+      ultimately show "x \<in> ?T" by simp
+    qed
+
+    show "finite ?T"
+      by (intro finite_cartesian_product fin finite_nodegraphs)
+  qed
+  thus ?thesis
+    unfolding finite_graph_def by simp
+qed
+
+
+lemma smallnodes_allfinite:
+  fixes A :: "'a acg"
+  assumes fin: "finite (smallnodes A)"
+  shows "all_finite A"
+  unfolding all_finite_def
+proof (intro allI impI)
+  fix n H m assume "has_edge A n H m"
+  then have "nodes H \<subseteq> smallnodes A"
+    by (rule in_smallnodes)
+  then have "finite (nodes H)" 
+    by (rule finite_subset) (rule fin)
+  thus "finite_graph H" by (rule scg_finite)
+qed
+
+lemma finite_tcl: 
+  fixes A :: "'a acg"
+  shows "finite_acg (tcl A) \<longleftrightarrow> finite_acg A"
+proof
+  assume f: "finite_acg A"
+  from f have g: "finite_graph A" and "all_finite A"
+    unfolding finite_acg_def by auto
+
+  from g have "finite (nodes A)" by (rule finite_nodes)
+  then have "finite (nodes (tcl A))" unfolding nodes_tcl .
+  moreover
+  from f have "finite (smallnodes A)" by (rule finite_smallnodes)
+  then have fs: "finite (smallnodes (tcl A))" unfolding smallnodes_tcl .
+  ultimately
+  have "finite_graph (tcl A)" by (rule finite_graphI)
+
+  moreover from fs have "all_finite (tcl A)"
+    by (rule smallnodes_allfinite)
+  ultimately show "finite_acg (tcl A)" unfolding finite_acg_def ..
+next
+  assume a: "finite_acg (tcl A)"
+  have "A \<le> tcl A" by (rule less_tcl)
+  thus "finite_acg A" using a
+    by (rule finite_acg_subset)
+qed
+
+lemma finite_acg_empty: "finite_acg (Graph {})"
+  unfolding finite_acg_def finite_graph_def all_finite_def
+  has_edge_def
+  by simp
+
+lemma finite_acg_ins: 
+  assumes fA: "finite_acg (Graph A)"
+  assumes fG: "finite G"
+  shows "finite_acg (Graph (insert (a, Graph G, b) A))" 
+  using fA fG
+  unfolding finite_acg_def finite_graph_def all_finite_def
+  has_edge_def
+  by auto
+
+lemmas finite_acg_simps = finite_acg_empty finite_acg_ins finite_graph_def
+
+subsection {* Contraction and more *}
+
+abbreviation 
+  "pdesc P == (fst P, prod P, end_node P)"
+
+lemma pdesc_acgplus: 
+  assumes "has_ipath \<A> p"
+  and "i < j"
+  shows "has_edge (tcl \<A>) (fst (p\<langle>i,j\<rangle>)) (prod (p\<langle>i,j\<rangle>)) (end_node (p\<langle>i,j\<rangle>))"
+  unfolding plus_paths
+  apply (rule exI)
+  apply (insert prems)  
+  by (auto intro:sub_path_is_path[of "\<A>" p i j] simp:sub_path_def)
+
+
+lemma combine_fthreads: 
+  assumes range: "i < j" "j \<le> k"
+  shows 
+  "has_fth p i k m r =
+  (\<exists>n. has_fth p i j m n \<and> has_fth p j k n r)" (is "?L = ?R")
+proof (intro iffI)
+  assume "?L"
+  then obtain \<theta>
+    where "is_fthread \<theta> p i k" 
+    and [simp]: "\<theta> i = m" "\<theta> k = r"
+    by (auto simp:has_fth_def)
+
+  with range
+  have "is_fthread \<theta> p i j" and "is_fthread \<theta> p j k"
+    by (auto simp:is_fthread_def)
+  hence "has_fth p i j m (\<theta> j)" and "has_fth p j k (\<theta> j) r"
+    by (auto simp:has_fth_def)
+  thus "?R" by auto
+next
+  assume "?R"
+  then obtain n \<theta>1 \<theta>2
+    where ths: "is_fthread \<theta>1 p i j" "is_fthread \<theta>2 p j k"
+    and [simp]: "\<theta>1 i = m" "\<theta>1 j = n" "\<theta>2 j = n" "\<theta>2 k = r"
+    by (auto simp:has_fth_def)
+
+  let ?\<theta> = "(\<lambda>i. if i < j then \<theta>1 i else \<theta>2 i)"
+  have "is_fthread ?\<theta> p i k"
+    unfolding is_fthread_def
+  proof
+    fix l assume range: "l \<in> {i..<k}"
+    
+    show "eqlat p ?\<theta> l"
+    proof (cases rule:three_cases)
+      assume "Suc l < j"
+      with ths range show ?thesis 
+	unfolding is_fthread_def Ball_def
+	by simp
+    next
+      assume "Suc l = j"
+      hence "l < j" "\<theta>2 (Suc l) = \<theta>1 (Suc l)" by auto
+      with ths range show ?thesis 
+	unfolding is_fthread_def Ball_def
+	by simp
+    next
+      assume "j \<le> l"
+      with ths range show ?thesis 
+	unfolding is_fthread_def Ball_def
+	by simp
+    qed arith
+  qed
+  moreover 
+  have "?\<theta> i = m" "?\<theta> k = r" using range by auto
+  ultimately show "has_fth p i k m r" 
+    by (auto simp:has_fth_def)
+qed 
+
+
+lemma desc_is_fthread:
+  "is_desc_fthread \<theta> p i k \<Longrightarrow> is_fthread \<theta> p i k"
+  unfolding is_desc_fthread_def
+  by simp
+
+
+lemma combine_dfthreads: 
+  assumes range: "i < j" "j \<le> k"
+  shows 
+  "has_desc_fth p i k m r =
+  (\<exists>n. (has_desc_fth p i j m n \<and> has_fth p j k n r)
+  \<or> (has_fth p i j m n \<and> has_desc_fth p j k n r))" (is "?L = ?R")
+proof 
+  assume "?L"
+  then obtain \<theta>
+    where desc: "is_desc_fthread \<theta> p i k" 
+    and [simp]: "\<theta> i = m" "\<theta> k = r"
+    by (auto simp:has_desc_fth_def)
+
+  hence "is_fthread \<theta> p i k"
+    by (simp add: desc_is_fthread)
+  with range have fths: "is_fthread \<theta> p i j" "is_fthread \<theta> p j k"
+    unfolding is_fthread_def
+    by auto
+  hence hfths: "has_fth p i j m (\<theta> j)" "has_fth p j k (\<theta> j) r"
+    by (auto simp:has_fth_def)
+
+  from desc obtain l 
+    where "i \<le> l" "l < k"
+    and "descat p \<theta> l"
+    by (auto simp:is_desc_fthread_def)
+
+  with fths
+  have "is_desc_fthread \<theta> p i j \<or> is_desc_fthread \<theta> p j k"
+    unfolding is_desc_fthread_def
+    by (cases "l < j") auto
+  hence "has_desc_fth p i j m (\<theta> j) \<or> has_desc_fth p j k (\<theta> j) r"
+    by (auto simp:has_desc_fth_def)
+  with hfths show ?R
+    by auto
+next
+  assume "?R"
+  then obtain n \<theta>1 \<theta>2
+    where "(is_desc_fthread \<theta>1 p i j \<and> is_fthread \<theta>2 p j k)
+    \<or> (is_fthread \<theta>1 p i j \<and> is_desc_fthread \<theta>2 p j k)"
+    and [simp]: "\<theta>1 i = m" "\<theta>1 j = n" "\<theta>2 j = n" "\<theta>2 k = r"
+    by (auto simp:has_fth_def has_desc_fth_def)
+
+  hence ths2: "is_fthread \<theta>1 p i j" "is_fthread \<theta>2 p j k"
+    and dths: "is_desc_fthread \<theta>1 p i j \<or> is_desc_fthread \<theta>2 p j k"
+    by (auto simp:desc_is_fthread)
+
+  let ?\<theta> = "(\<lambda>i. if i < j then \<theta>1 i else \<theta>2 i)"
+  have "is_fthread ?\<theta> p i k"
+    unfolding is_fthread_def
+  proof
+    fix l assume range: "l \<in> {i..<k}"
+    
+    show "eqlat p ?\<theta> l"
+    proof (cases rule:three_cases)
+      assume "Suc l < j"
+      with ths2 range show ?thesis 
+	unfolding is_fthread_def Ball_def
+	by simp
+    next
+      assume "Suc l = j"
+      hence "l < j" "\<theta>2 (Suc l) = \<theta>1 (Suc l)" by auto
+      with ths2 range show ?thesis 
+	unfolding is_fthread_def Ball_def
+	by simp
+    next
+      assume "j \<le> l"
+      with ths2 range show ?thesis 
+	unfolding is_fthread_def Ball_def
+	by simp
+    qed arith
+  qed
+  moreover
+  from dths
+  have "\<exists>l. i \<le> l \<and> l < k \<and> descat p ?\<theta> l"
+  proof
+    assume "is_desc_fthread \<theta>1 p i j"
+
+    then obtain l where range: "i \<le> l" "l < j" and "descat p \<theta>1 l"
+      unfolding is_desc_fthread_def Bex_def by auto
+    hence "descat p ?\<theta> l" 
+      by (cases "Suc l = j", auto)
+    with `j \<le> k` and range show ?thesis 
+      by (rule_tac x="l" in exI, auto)
+  next
+    assume "is_desc_fthread \<theta>2 p j k"
+    then obtain l where range: "j \<le> l" "l < k" and "descat p \<theta>2 l"
+      unfolding is_desc_fthread_def Bex_def by auto
+    with `i < j` have "descat p ?\<theta> l" "i \<le> l"
+      by auto
+    with range show ?thesis 
+      by (rule_tac x="l" in exI, auto)
+  qed
+  ultimately have "is_desc_fthread ?\<theta> p i k"
+    by (simp add: is_desc_fthread_def Bex_def)
+
+  moreover 
+  have "?\<theta> i = m" "?\<theta> k = r" using range by auto
+
+  ultimately show "has_desc_fth p i k m r" 
+    by (auto simp:has_desc_fth_def)
+qed 
+
+    
+
+lemma fth_single:
+  "has_fth p i (Suc i) m n = eql (snd (p i)) m n" (is "?L = ?R")
+proof 
+  assume "?L" thus "?R"
+    unfolding is_fthread_def Ball_def has_fth_def
+    by auto
+next
+  let ?\<theta> = "\<lambda>k. if k = i then m else n"
+  assume edge: "?R"
+  hence "is_fthread ?\<theta> p i (Suc i) \<and> ?\<theta> i = m \<and> ?\<theta> (Suc i) = n"
+    unfolding is_fthread_def Ball_def
+    by auto
+
+  thus "?L"
+    unfolding has_fth_def 
+    by auto
+qed
+
+lemma desc_fth_single:
+  "has_desc_fth p i (Suc i) m n = 
+  dsc (snd (p i)) m n" (is "?L = ?R")
+proof 
+  assume "?L" thus "?R"
+    unfolding is_desc_fthread_def has_desc_fth_def is_fthread_def
+    Bex_def 
+    by (elim exE conjE) (case_tac "k = i", auto)
+next
+  let ?\<theta> = "\<lambda>k. if k = i then m else n"
+  assume edge: "?R"
+  hence "is_desc_fthread ?\<theta> p i (Suc i) \<and> ?\<theta> i = m \<and> ?\<theta> (Suc i) = n"
+    unfolding is_desc_fthread_def is_fthread_def Ball_def Bex_def
+    by auto
+  thus "?L"
+    unfolding has_desc_fth_def 
+    by auto
+qed
+
+lemma mk_eql: "(G \<turnstile> m \<leadsto>\<^bsup>e\<^esup> n) \<Longrightarrow> eql G m n"
+  by (cases e, auto)
+
+lemma eql_scgcomp:
+  "eql (G * H) m r =
+  (\<exists>n. eql G m n \<and> eql H n r)" (is "?L = ?R")
+proof
+  show "?L \<Longrightarrow> ?R"
+    by (auto simp:in_grcomp intro!:mk_eql)
+
+  assume "?R"
+  then obtain n where l: "eql G m n" and r:"eql H n r" by auto
+  thus ?L
+    by (cases "dsc G m n") (auto simp:in_grcomp mult_sedge_def)
+qed
+
+lemma desc_scgcomp:
+  "dsc (G * H) m r =
+  (\<exists>n. (dsc G m n \<and> eql H n r) \<or> (eq G m n \<and> dsc H n r))" (is "?L = ?R")
+proof
+  show "?R \<Longrightarrow> ?L" by (auto simp:in_grcomp mult_sedge_def)
+
+  assume "?L"
+  thus ?R
+    by (auto simp:in_grcomp mult_sedge_def)
+  (case_tac "e", auto, case_tac "e'", auto)
+qed
+
+
+lemma has_fth_unfold:
+  assumes "i < j"
+  shows "has_fth p i j m n = 
+    (\<exists>r. has_fth p i (Suc i) m r \<and> has_fth p (Suc i) j r n)"
+    by (rule combine_fthreads) (insert `i < j`, auto)
+
+lemma has_dfth_unfold:
+  assumes range: "i < j"
+  shows 
+  "has_desc_fth p i j m r =
+  (\<exists>n. (has_desc_fth p i (Suc i) m n \<and> has_fth p (Suc i) j n r)
+  \<or> (has_fth p i (Suc i) m n \<and> has_desc_fth p (Suc i) j n r))"
+  by (rule combine_dfthreads) (insert `i < j`, auto)
+
+
+lemma Lemma7a:
+ "i \<le> j \<Longrightarrow> has_fth p i j m n = eql (prod (p\<langle>i,j\<rangle>)) m n"
+proof (induct i arbitrary: m rule:inc_induct)
+  case base show ?case
+    unfolding has_fth_def is_fthread_def sub_path_def
+    by (auto simp:in_grunit one_sedge_def)
+next
+  case (step i)
+  note IH = `\<And>m. has_fth p (Suc i) j m n = 
+  eql (prod (p\<langle>Suc i,j\<rangle>)) m n`
+
+  have "has_fth p i j m n 
+    = (\<exists>r. has_fth p i (Suc i) m r \<and> has_fth p (Suc i) j r n)"
+    by (rule has_fth_unfold[OF `i < j`])
+  also have "\<dots> = (\<exists>r. has_fth p i (Suc i) m r 
+    \<and> eql (prod (p\<langle>Suc i,j\<rangle>)) r n)"
+    by (simp only:IH)
+  also have "\<dots> = (\<exists>r. eql (snd (p i)) m r
+    \<and> eql (prod (p\<langle>Suc i,j\<rangle>)) r n)"
+    by (simp only:fth_single)
+  also have "\<dots> = eql (snd (p i) * prod (p\<langle>Suc i,j\<rangle>)) m n"
+    by (simp only:eql_scgcomp)
+  also have "\<dots> = eql (prod (p\<langle>i,j\<rangle>)) m n"
+    by (simp only:prod_unfold[OF `i < j`])
+  finally show ?case .
+qed
+
+
+lemma Lemma7b:
+assumes "i \<le> j"
+shows
+  "has_desc_fth p i j m n = 
+  dsc (prod (p\<langle>i,j\<rangle>)) m n"
+using prems
+proof (induct i arbitrary: m rule:inc_induct)
+  case base show ?case
+    unfolding has_desc_fth_def is_desc_fthread_def sub_path_def 
+    by (auto simp:in_grunit one_sedge_def)
+next
+  case (step i)
+  thus ?case 
+    by (simp only:prod_unfold desc_scgcomp desc_fth_single
+    has_dfth_unfold fth_single Lemma7a) auto
+qed
+
+
+lemma descat_contract:
+  assumes [simp]: "increasing s"
+  shows
+  "descat (contract s p) \<theta> i = 
+  has_desc_fth p (s i) (s (Suc i)) (\<theta> i) (\<theta> (Suc i))"
+  by (simp add:Lemma7b increasing_weak contract_def)
+
+lemma eqlat_contract:
+  assumes [simp]: "increasing s"
+  shows
+  "eqlat (contract s p) \<theta> i = 
+  has_fth p (s i) (s (Suc i)) (\<theta> i) (\<theta> (Suc i))"
+  by (auto simp:Lemma7a increasing_weak contract_def)
+
+
+subsubsection {* Connecting threads *}
+
+definition
+  "connect s \<theta>s = (\<lambda>k. \<theta>s (section_of s k) k)"
+
+
+lemma next_in_range:
+  assumes [simp]: "increasing s"
+  assumes a: "k \<in> section s i"
+  shows "(Suc k \<in> section s i) \<or> (Suc k \<in> section s (Suc i))"
+proof -
+  from a have "k < s (Suc i)" by simp
+  
+  hence "Suc k < s (Suc i) \<or> Suc k = s (Suc i)" by arith
+  thus ?thesis
+  proof
+    assume "Suc k < s (Suc i)"
+    with a have "Suc k \<in> section s i" by simp
+    thus ?thesis ..
+  next
+    assume eq: "Suc k = s (Suc i)"
+    with increasing_strict have "Suc k < s (Suc (Suc i))" by simp
+    with eq have "Suc k \<in> section s (Suc i)" by simp
+    thus ?thesis ..
+  qed
+qed
+
+
+lemma connect_threads:
+  assumes [simp]: "increasing s"
+  assumes connected: "\<theta>s i (s (Suc i)) = \<theta>s (Suc i) (s (Suc i))"
+  assumes fth: "is_fthread (\<theta>s i) p (s i) (s (Suc i))"
+
+  shows
+  "is_fthread (connect s \<theta>s) p (s i) (s (Suc i))"
+  unfolding is_fthread_def
+proof 
+  fix k assume krng: "k \<in> section s i"
+
+  with fth have eqlat: "eqlat p (\<theta>s i) k" 
+    unfolding is_fthread_def by simp
+
+  from krng and next_in_range 
+  have "(Suc k \<in> section s i) \<or> (Suc k \<in> section s (Suc i))" 
+    by simp
+  thus "eqlat p (connect s \<theta>s) k"
+  proof
+    assume "Suc k \<in> section s i"
+    with krng eqlat show ?thesis
+      unfolding connect_def
+      by (simp only:section_of_known `increasing s`)
+  next
+    assume skrng: "Suc k \<in> section s (Suc i)"
+    with krng have "Suc k = s (Suc i)" by auto
+
+    with krng skrng eqlat show ?thesis
+      unfolding connect_def
+      by (simp only:section_of_known connected[symmetric] `increasing s`)
+  qed
+qed
+
+
+lemma connect_dthreads:
+  assumes inc[simp]: "increasing s"
+  assumes connected: "\<theta>s i (s (Suc i)) = \<theta>s (Suc i) (s (Suc i))"
+  assumes fth: "is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))"
+
+  shows
+  "is_desc_fthread (connect s \<theta>s) p (s i) (s (Suc i))"
+  unfolding is_desc_fthread_def
+proof 
+  show "is_fthread (connect s \<theta>s) p (s i) (s (Suc i))"
+    apply (rule connect_threads)
+    apply (insert fth)
+    by (auto simp:connected is_desc_fthread_def)
+
+  from fth
+  obtain k where dsc: "descat p (\<theta>s i) k" and krng: "k \<in> section s i"
+    unfolding is_desc_fthread_def by blast
+  
+  from krng and next_in_range 
+  have "(Suc k \<in> section s i) \<or> (Suc k \<in> section s (Suc i))" 
+    by simp
+  hence "descat p (connect s \<theta>s) k"
+  proof
+    assume "Suc k \<in> section s i"
+    with krng dsc show ?thesis unfolding connect_def
+      by (simp only:section_of_known inc)
+  next
+    assume skrng: "Suc k \<in> section s (Suc i)"
+    with krng have "Suc k = s (Suc i)" by auto
+
+    with krng skrng dsc show ?thesis unfolding connect_def
+      by (simp only:section_of_known connected[symmetric] inc)
+  qed
+  with krng show "\<exists>k\<in>section s i. descat p (connect s \<theta>s) k" ..
+qed
+
+lemma mk_inf_thread:
+  assumes [simp]: "increasing s"
+  assumes fths: "\<And>i. i > n \<Longrightarrow> is_fthread \<theta> p (s i) (s (Suc i))"
+  shows "is_thread (s (Suc n)) \<theta> p"
+  unfolding is_thread_def 
+proof (intro allI impI)
+  fix j assume st: "s (Suc n) \<le> j"
+
+  let ?k = "section_of s j"
+  from in_section_of st
+  have rs: "j \<in> section s ?k" by simp
+
+  with st have "s (Suc n) < s (Suc ?k)" by simp
+  with increasing_bij have "n < ?k" by simp
+  with rs and fths[of ?k]
+  show "eqlat p \<theta> j" by (simp add:is_fthread_def)
+qed
+
+
+lemma mk_inf_desc_thread:
+  assumes [simp]: "increasing s"
+  assumes fths: "\<And>i. i > n \<Longrightarrow> is_fthread \<theta> p (s i) (s (Suc i))"
+  assumes fdths: "\<exists>\<^sub>\<infinity>i. is_desc_fthread \<theta> p (s i) (s (Suc i))"
+  shows "is_desc_thread \<theta> p"
+  unfolding is_desc_thread_def 
+proof (intro exI conjI)
+
+  from mk_inf_thread[of s n \<theta> p] fths
+  show "\<forall>i\<ge>s (Suc n). eqlat p \<theta> i" 
+    by (fold is_thread_def) simp
+
+  show "\<exists>\<^sub>\<infinity>l. descat p \<theta> l"
+    unfolding INF_nat
+  proof
+    fix i 
+    
+    let ?k = "section_of s i"
+    from fdths obtain j
+      where "?k < j" "is_desc_fthread \<theta> p (s j) (s (Suc j))"
+      unfolding INF_nat by auto
+    then obtain l where "s j \<le> l" and desc: "descat p \<theta> l"
+      unfolding is_desc_fthread_def
+      by auto
+
+    have "i < s (Suc ?k)" by (rule section_of2) simp
+    also have "\<dots> \<le> s j"
+      by (rule increasing_weak [OF `increasing s`]) (insert `?k < j`, arith)
+    also note `\<dots> \<le> l`
+    finally have "i < l" .
+    with desc
+    show "\<exists>l. i < l \<and> descat p \<theta> l" by blast
+  qed
+qed
+
+
+lemma desc_ex_choice:
+  assumes A: "((\<exists>n.\<forall>i\<ge>n. \<exists>x. P x i) \<and> (\<exists>\<^sub>\<infinity>i. \<exists>x. Q x i))"
+  and imp: "\<And>x i. Q x i \<Longrightarrow> P x i"
+  shows "\<exists>xs. ((\<exists>n.\<forall>i\<ge>n. P (xs i) i) \<and> (\<exists>\<^sub>\<infinity>i. Q (xs i) i))"
+  (is "\<exists>xs. ?Ps xs \<and> ?Qs xs")
+proof
+  let ?w = "\<lambda>i. (if (\<exists>x. Q x i) then (SOME x. Q x i)
+                                 else (SOME x. P x i))"
+
+  from A
+  obtain n where P: "\<And>i. n \<le> i \<Longrightarrow> \<exists>x. P x i"
+    by auto
+  {
+    fix i::'a assume "n \<le> i"
+
+    have "P (?w i) i"
+    proof (cases "\<exists>x. Q x i")
+      case True
+      hence "Q (?w i) i" by (auto intro:someI)
+      with imp show "P (?w i) i" .
+    next
+      case False
+      with P[OF `n \<le> i`] show "P (?w i) i" 
+        by (auto intro:someI)
+    qed
+  }
+
+  hence "?Ps ?w" by (rule_tac x=n in exI) auto
+
+  moreover
+  from A have "\<exists>\<^sub>\<infinity>i. (\<exists>x. Q x i)" ..
+  hence "?Qs ?w" by (rule INF_mono) (auto intro:someI)
+  ultimately
+  show "?Ps ?w \<and> ?Qs ?w" ..
+qed
+
+
+
+lemma dthreads_join:
+  assumes [simp]: "increasing s"
+  assumes dthread: "is_desc_thread \<theta> (contract s p)"
+  shows "\<exists>\<theta>s. desc (\<lambda>i. is_fthread (\<theta>s i) p (s i) (s (Suc i))
+                           \<and> \<theta>s i (s i) = \<theta> i 
+                           \<and> \<theta>s i (s (Suc i)) = \<theta> (Suc i))
+                   (\<lambda>i. is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))
+                           \<and> \<theta>s i (s i) = \<theta> i 
+                           \<and> \<theta>s i (s (Suc i)) = \<theta> (Suc i))"
+    apply (rule desc_ex_choice)
+    apply (insert dthread)
+    apply (simp only:is_desc_thread_def)
+    apply (simp add:eqlat_contract)
+    apply (simp add:descat_contract)
+    apply (simp only:has_fth_def has_desc_fth_def)
+    by (auto simp:is_desc_fthread_def)
+
+
+
+lemma INF_drop_prefix:
+  "(\<exists>\<^sub>\<infinity>i::nat. i > n \<and> P i) = (\<exists>\<^sub>\<infinity>i. P i)"
+  apply (auto simp:INF_nat)
+  apply (drule_tac x = "max m n" in spec)
+  apply (elim exE conjE)
+  apply (rule_tac x = "na" in exI)
+  by auto
+
+
+
+lemma contract_keeps_threads:
+  assumes inc[simp]: "increasing s"
+  shows "(\<exists>\<theta>. is_desc_thread \<theta> p) 
+  \<longleftrightarrow> (\<exists>\<theta>. is_desc_thread \<theta> (contract s p))"
+  (is "?A \<longleftrightarrow> ?B")
+proof 
+  assume "?A"
+  then obtain \<theta> n 
+    where fr: "\<forall>i\<ge>n. eqlat p \<theta> i" 
+      and ds: "\<exists>\<^sub>\<infinity>i. descat p \<theta> i"
+    unfolding is_desc_thread_def 
+    by auto
+
+  let ?c\<theta> = "\<lambda>i. \<theta> (s i)"
+
+  have "is_desc_thread ?c\<theta> (contract s p)"
+    unfolding is_desc_thread_def
+  proof (intro exI conjI)
+    
+    show "\<forall>i\<ge>n. eqlat (contract s p) ?c\<theta> i"
+    proof (intro allI impI)
+      fix i assume "n \<le> i"
+      also have "i \<le> s i" 
+	using increasing_inc by auto
+      finally have "n \<le> s i" .
+
+      with fr have "is_fthread \<theta> p (s i) (s (Suc i))"
+	unfolding is_fthread_def by auto
+      hence "has_fth p (s i) (s (Suc i)) (\<theta> (s i)) (\<theta> (s (Suc i)))"
+	unfolding has_fth_def by auto
+      with less_imp_le[OF increasing_strict]
+      have "eql (prod (p\<langle>s i,s (Suc i)\<rangle>)) (\<theta> (s i)) (\<theta> (s (Suc i)))"
+	by (simp add:Lemma7a)
+      thus "eqlat (contract s p) ?c\<theta> i" unfolding contract_def
+	by auto
+    qed
+
+    show "\<exists>\<^sub>\<infinity>i. descat (contract s p) ?c\<theta> i"
+      unfolding INF_nat 
+    proof 
+      fix i
+
+      let ?K = "section_of s (max (s (Suc i)) n)"
+      from `\<exists>\<^sub>\<infinity>i. descat p \<theta> i` obtain j
+	  where "s (Suc ?K) < j" "descat p \<theta> j"
+	unfolding INF_nat by blast
+      
+      let ?L = "section_of s j"
+      {
+	fix x assume r: "x \<in> section s ?L"
+	
+	have e1: "max (s (Suc i)) n < s (Suc ?K)" by (rule section_of2) simp
+        note `s (Suc ?K) < j`
+        also have "j < s (Suc ?L)"
+          by (rule section_of2) simp
+        finally have "Suc ?K \<le> ?L"
+          by (simp add:increasing_bij)          
+	with increasing_weak have "s (Suc ?K) \<le> s ?L" by simp
+	with e1 r have "max (s (Suc i)) n < x" by simp
+        
+	hence "(s (Suc i)) < x" "n < x" by auto
+      }
+      note range_est = this
+      
+      have "is_desc_fthread \<theta> p (s ?L) (s (Suc ?L))"
+	unfolding is_desc_fthread_def is_fthread_def
+      proof
+	show "\<forall>m\<in>section s ?L. eqlat p \<theta> m"
+        proof 
+          fix m assume "m\<in>section s ?L"
+          with range_est(2) have "n < m" . 
+          with fr show "eqlat p \<theta> m" by simp
+        qed
+
+        from in_section_of inc less_imp_le[OF `s (Suc ?K) < j`]
+	have "j \<in> section s ?L" .
+
+	with `descat p \<theta> j`
+	show "\<exists>m\<in>section s ?L. descat p \<theta> m" ..
+      qed
+      
+      with less_imp_le[OF increasing_strict]
+      have a: "descat (contract s p) ?c\<theta> ?L"
+	unfolding contract_def Lemma7b[symmetric]
+	by (auto simp:Lemma7b[symmetric] has_desc_fth_def)
+      
+      have "i < ?L"
+      proof (rule classical)
+	assume "\<not> i < ?L" 
+	hence "s ?L < s (Suc i)" 
+          by (simp add:increasing_bij)
+	also have "\<dots> < s ?L"
+	  by (rule range_est(1)) (simp add:increasing_strict)
+	finally show ?thesis .
+      qed
+      with a show "\<exists>l. i < l \<and> descat (contract s p) ?c\<theta> l"
+        by blast
+    qed
+  qed
+  with exI show "?B" .
+next
+  assume "?B"
+  then obtain \<theta> 
+    where dthread: "is_desc_thread \<theta> (contract s p)" ..
+
+  with dthreads_join inc 
+  obtain \<theta>s where ths_spec:
+    "desc (\<lambda>i. is_fthread (\<theta>s i) p (s i) (s (Suc i))
+                  \<and> \<theta>s i (s i) = \<theta> i 
+                  \<and> \<theta>s i (s (Suc i)) = \<theta> (Suc i))
+          (\<lambda>i. is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))
+                  \<and> \<theta>s i (s i) = \<theta> i 
+                  \<and> \<theta>s i (s (Suc i)) = \<theta> (Suc i))" 
+      (is "desc ?alw ?inf") 
+    by blast
+
+  then obtain n where fr: "\<forall>i\<ge>n. ?alw i" by blast
+  hence connected: "\<And>i. n < i \<Longrightarrow> \<theta>s i (s (Suc i)) = \<theta>s (Suc i) (s (Suc i))"
+    by auto
+  
+  let ?j\<theta> = "connect s \<theta>s"
+  
+  from fr ths_spec have ths_spec2:
+      "\<And>i. i > n \<Longrightarrow> is_fthread (\<theta>s i) p (s i) (s (Suc i))"
+      "\<exists>\<^sub>\<infinity>i. is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))"
+    by (auto intro:INF_mono)
+  
+  have p1: "\<And>i. i > n \<Longrightarrow> is_fthread ?j\<theta> p (s i) (s (Suc i))"
+    by (rule connect_threads) (auto simp:connected ths_spec2)
+  
+  from ths_spec2(2)
+  have "\<exists>\<^sub>\<infinity>i. n < i \<and> is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))"
+    unfolding INF_drop_prefix .
+  
+  hence p2: "\<exists>\<^sub>\<infinity>i. is_desc_fthread ?j\<theta> p (s i) (s (Suc i))"
+    apply (rule INF_mono)
+    apply (rule connect_dthreads)
+    by (auto simp:connected)
+  
+  with `increasing s` p1
+  have "is_desc_thread ?j\<theta> p" 
+    by (rule mk_inf_desc_thread)
+  with exI show "?A" .
+qed
+
+
+lemma repeated_edge:
+  assumes "\<And>i. i > n \<Longrightarrow> dsc (snd (p i)) k k"
+  shows "is_desc_thread (\<lambda>i. k) p"
+proof-
+  have th: "\<forall> m. \<exists>na>m. n < na" by arith
+  show ?thesis using prems
+  unfolding is_desc_thread_def 
+  apply (auto)
+  apply (rule_tac x="Suc n" in exI, auto)
+  apply (rule INF_mono[where P="\<lambda>i. n < i"])
+  apply (simp only:INF_nat)
+  by (auto simp add: th)
+qed
+
+lemma fin_from_inf:
+  assumes "is_thread n \<theta> p"
+  assumes "n < i"
+  assumes "i < j"
+  shows "is_fthread \<theta> p i j"
+  using prems
+  unfolding is_thread_def is_fthread_def 
+  by auto
+
+
+subsection {* Ramsey's Theorem *}
+
+definition 
+  "set2pair S = (THE (x,y). x < y \<and> S = {x,y})"
+
+lemma set2pair_conv: 
+  fixes x y :: nat
+  assumes "x < y"
+  shows "set2pair {x, y} = (x, y)"
+  unfolding set2pair_def
+proof (rule the_equality, simp_all only:split_conv split_paired_all)
+  from `x < y` show "x < y \<and> {x,y}={x,y}" by simp
+next
+  fix a b
+  assume a: "a < b \<and> {x, y} = {a, b}"
+  hence "{a, b} = {x, y}" by simp_all
+  hence "(a, b) = (x, y) \<or> (a, b) = (y, x)" 
+    by (cases "x = y") auto
+  thus "(a, b) = (x, y)"
+  proof 
+    assume "(a, b) = (y, x)"
+    with a and `x < y`
+    show ?thesis by auto (* contradiction *)
+  qed
+qed  
+
+definition 
+  "set2list = inv set"
+
+lemma finite_set2list: 
+  assumes "finite S" 
+  shows "set (set2list S) = S"
+  unfolding set2list_def 
+proof (rule f_inv_f)
+  from `finite S` have "\<exists>l. set l = S"
+    by (rule finite_list)
+  thus "S \<in> range set"
+    unfolding image_def
+    by auto
+qed
+
+
+corollary RamseyNatpairs:
+  fixes S :: "'a set"
+    and f :: "nat \<times> nat \<Rightarrow> 'a"
+
+  assumes "finite S"
+  and inS: "\<And>x y. x < y \<Longrightarrow> f (x, y) \<in> S"
+
+  obtains T :: "nat set" and s :: "'a"
+  where "infinite T"
+    and "s \<in> S"
+    and "\<And>x y. \<lbrakk>x \<in> T; y \<in> T; x < y\<rbrakk> \<Longrightarrow> f (x, y) = s"
+proof -
+  from `finite S`
+  have "set (set2list S) = S" by (rule finite_set2list)
+  then 
+  obtain l where S: "S = set l" by auto
+  also from set_conv_nth have "\<dots> = {l ! i |i. i < length l}" .
+  finally have "S = {l ! i |i. i < length l}" .
+
+  let ?s = "length l"
+
+  from inS 
+  have index_less: "\<And>x y. x \<noteq> y \<Longrightarrow> index_of l (f (set2pair {x, y})) < ?s"
+  proof -
+    fix x y :: nat
+    assume neq: "x \<noteq> y"
+    have "f (set2pair {x, y}) \<in> S"
+    proof (cases "x < y")
+      case True hence "set2pair {x, y} = (x, y)"
+	by (rule set2pair_conv)
+      with True inS
+      show ?thesis by simp
+    next
+      case False 
+      with neq have y_less: "y < x" by simp
+      have x:"{x,y} = {y,x}" by auto
+      with y_less have "set2pair {x, y} = (y, x)"
+	by (simp add:set2pair_conv)
+      with y_less inS
+      show ?thesis by simp
+    qed
+
+    thus "index_of l (f (set2pair {x, y})) < length l"
+      by (simp add: S index_of_length)
+  qed
+
+  have "\<exists>Y. infinite Y \<and>
+    (\<exists>t. t < ?s \<and>
+         (\<forall>x\<in>Y. \<forall>y\<in>Y. x \<noteq> y \<longrightarrow>
+                      index_of l (f (set2pair {x, y})) = t))"
+    by (rule Ramsey2[of "UNIV::nat set", simplified])
+       (auto simp:index_less)
+  then obtain T i
+    where inf: "infinite T"
+    and i: "i < length l"
+    and d: "\<And>x y. \<lbrakk>x \<in> T; y\<in>T; x \<noteq> y\<rbrakk>
+    \<Longrightarrow> index_of l (f (set2pair {x, y})) = i"
+    by auto
+
+  have "l ! i \<in> S" unfolding S using i
+    by (rule nth_mem)
+  moreover
+  have "\<And>x y. x \<in> T \<Longrightarrow> y\<in>T \<Longrightarrow> x < y
+    \<Longrightarrow> f (x, y) = l ! i"
+  proof -
+    fix x y assume "x \<in> T" "y \<in> T" "x < y"
+    with d have 
+      "index_of l (f (set2pair {x, y})) = i" by auto
+    with `x < y`
+    have "i = index_of l (f (x, y))" 
+      by (simp add:set2pair_conv)
+    with `i < length l`
+    show "f (x, y) = l ! i" 
+      by (auto intro:index_of_member[symmetric] iff:index_of_length)
+  qed
+  moreover note inf
+  ultimately
+  show ?thesis using prems
+    by blast
+qed
+
+
+subsection {* Main Result *}
+
+
+theorem LJA_Theorem4: 
+  assumes "finite_acg A"
+  shows "SCT A \<longleftrightarrow> SCT' A"
+proof
+  assume "SCT A"
+  
+  show "SCT' A"
+  proof (rule classical)
+    assume "\<not> SCT' A"
+    
+    then obtain n G
+      where in_closure: "(tcl A) \<turnstile> n \<leadsto>\<^bsup>G\<^esup> n"
+      and idemp: "G * G = G"
+      and no_strict_arc: "\<forall>p. \<not>(G \<turnstile> p \<leadsto>\<^bsup>\<down>\<^esup> p)"
+      unfolding SCT'_def no_bad_graphs_def by auto
+    
+    from in_closure obtain k
+      where k_pow: "A ^ k \<turnstile> n \<leadsto>\<^bsup>G\<^esup> n"
+      and "0 < k"
+      unfolding in_tcl by auto
+	
+    from power_induces_path k_pow
+    obtain loop where loop_props:
+      "has_fpath A loop"
+      "n = fst loop" "n = end_node loop"
+      "G = prod loop" "k = length (snd loop)" . 
+
+    with `0 < k` and path_loop_graph
+    have "has_ipath A (omega loop)" by blast
+    with `SCT A` 
+    have thread: "\<exists>\<theta>. is_desc_thread \<theta> (omega loop)" by (auto simp:SCT_def)
+
+    let ?s = "\<lambda>i. k * i"
+    let ?cp = "\<lambda>i::nat. (n, G)"
+
+    from loop_props have "fst loop = end_node loop" by auto
+    with `0 < k` `k = length (snd loop)`
+    have "\<And>i. (omega loop)\<langle>?s i,?s (Suc i)\<rangle> = loop"
+      by (rule sub_path_loop)
+
+    with `n = fst loop` `G = prod loop` `k = length (snd loop)`
+    have a: "contract ?s (omega loop) = ?cp"
+      unfolding contract_def
+      by (simp add:path_loop_def split_def fst_p0)
+
+    from `0 < k` have "increasing ?s"
+      by (auto simp:increasing_def)
+    with thread have "\<exists>\<theta>. is_desc_thread \<theta> ?cp"
+      unfolding a[symmetric] 
+      by (unfold contract_keeps_threads[symmetric])
+
+    then obtain \<theta> where desc: "is_desc_thread \<theta> ?cp" by auto
+
+    then obtain n where thr: "is_thread n \<theta> ?cp" 
+      unfolding is_desc_thread_def is_thread_def 
+      by auto
+
+    have "finite (range \<theta>)"
+    proof (rule finite_range_ignore_prefix)
+      
+      from `finite_acg A`
+      have "finite_acg (tcl A)" by (simp add:finite_tcl)
+      with in_closure have "finite_graph G" 
+        unfolding finite_acg_def all_finite_def by blast
+      thus "finite (nodes G)" by (rule finite_nodes)
+
+      from thread_image_nodes[OF thr]
+      show "\<forall>i\<ge>n. \<theta> i \<in> nodes G" by simp
+    qed
+    with finite_range
+    obtain p where inf_visit: "\<exists>\<^sub>\<infinity>i. \<theta> i = p" by auto
+
+    then obtain i where "n < i" "\<theta> i = p" 
+      by (auto simp:INF_nat)
+
+    from desc
+    have "\<exists>\<^sub>\<infinity>i. descat ?cp \<theta> i"
+      unfolding is_desc_thread_def by auto
+    then obtain j 
+      where "i < j" and "descat ?cp \<theta> j"
+      unfolding INF_nat by auto
+    from inf_visit obtain k where "j < k" "\<theta> k = p"
+      by (auto simp:INF_nat)
+
+    from `i < j` `j < k` `n < i` thr 
+      fin_from_inf[of n \<theta> ?cp]
+      `descat ?cp \<theta> j`
+    have "is_desc_fthread \<theta> ?cp i k"
+      unfolding is_desc_fthread_def
+      by auto
+
+    with `\<theta> k = p` `\<theta> i = p`
+    have dfth: "has_desc_fth ?cp i k p p"
+      unfolding has_desc_fth_def
+      by auto
+
+    from `i < j` `j < k` have "i < k" by auto
+    hence "prod (?cp\<langle>i, k\<rangle>) = G"
+    proof (induct i rule:strict_inc_induct)
+      case base thus ?case by (simp add:sub_path_def)
+    next
+      case (step i) thus ?case
+	by (simp add:sub_path_def upt_rec[of i k] idemp)
+    qed
+
+    with `i < j` `j < k` dfth Lemma7b[of i k ?cp p p]
+    have "dsc G p p" by auto
+    with no_strict_arc have False by auto
+    thus ?thesis ..
+  qed
+next
+  assume "SCT' A"
+
+  show "SCT A"
+  proof (rule classical)
+    assume "\<not> SCT A"
+
+    with SCT_def
+    obtain p 
+      where ipath: "has_ipath A p"
+      and no_desc_th: "\<not> (\<exists>\<theta>. is_desc_thread \<theta> p)"
+      by blast
+
+    from `finite_acg A`
+    have "finite_acg (tcl A)" by (simp add: finite_tcl)
+    hence "finite (dest_graph (tcl A))" (is "finite ?AG")
+      by (simp add: finite_acg_def finite_graph_def)
+
+    from pdesc_acgplus[OF ipath]
+    have a: "\<And>x y. x<y \<Longrightarrow> pdesc p\<langle>x,y\<rangle> \<in> dest_graph (tcl A)"
+      unfolding has_edge_def .
+      
+    obtain S G
+      where "infinite S" "G \<in> dest_graph (tcl A)" 
+      and all_G: "\<And>x y. \<lbrakk> x \<in> S; y \<in> S; x < y\<rbrakk> \<Longrightarrow> 
+      pdesc (p\<langle>x,y\<rangle>) = G"
+      apply (rule RamseyNatpairs[of ?AG "\<lambda>(x,y). pdesc p\<langle>x, y\<rangle>"])
+      apply (rule `finite ?AG`)
+      by (simp only:split_conv, rule a, auto)
+
+    obtain n H m where
+      G_struct: "G = (n, H, m)" by (cases G)
+
+    let ?s = "enumerate S"
+    let ?q = "contract ?s p"
+
+    note all_in_S[simp] = enumerate_in_set[OF `infinite S`]
+	from `infinite S` 
+    have inc[simp]: "increasing ?s" 
+      unfolding increasing_def by (simp add:enumerate_mono)
+    note increasing_bij[OF this, simp]
+      
+    from ipath_contract inc ipath
+    have "has_ipath (tcl A) ?q" .
+
+    from all_G G_struct 
+    have all_H: "\<And>i. (snd (?q i)) = H"
+	  unfolding contract_def 
+      by simp
+    
+    have loop: "(tcl A) \<turnstile> n \<leadsto>\<^bsup>H\<^esup> n"
+      and idemp: "H * H = H"
+    proof - 
+      let ?i = "?s 0" and ?j = "?s (Suc 0)" and ?k = "?s (Suc (Suc 0))"
+      
+      have "pdesc (p\<langle>?i,?j\<rangle>) = G"
+		and "pdesc (p\<langle>?j,?k\<rangle>) = G"
+		and "pdesc (p\<langle>?i,?k\<rangle>) = G"
+		using all_G 
+		by auto
+	  
+      with G_struct 
+      have "m = end_node (p\<langle>?i,?j\<rangle>)"
+				"n = fst (p\<langle>?j,?k\<rangle>)"
+				and Hs:	"prod (p\<langle>?i,?j\<rangle>) = H"
+				"prod (p\<langle>?j,?k\<rangle>) = H"
+				"prod (p\<langle>?i,?k\<rangle>) = H"
+		by auto
+			
+      hence "m = n" by simp
+      thus "tcl A \<turnstile> n \<leadsto>\<^bsup>H\<^esup> n"
+		using G_struct `G \<in> dest_graph (tcl A)`
+		by (simp add:has_edge_def)
+	  
+      from sub_path_prod[of ?i ?j ?k p]      
+      show "H * H = H"
+		unfolding Hs by simp
+    qed
+    moreover have "\<And>k. \<not>dsc H k k"
+    proof
+      fix k :: 'a assume "dsc H k k"
+      
+      with all_H repeated_edge
+      have "\<exists>\<theta>. is_desc_thread \<theta> ?q" by fast
+	  with inc have "\<exists>\<theta>. is_desc_thread \<theta> p"
+		by (subst contract_keeps_threads) 
+      with no_desc_th
+      show False ..
+    qed
+    ultimately 
+    have False
+      using `SCT' A`[unfolded SCT'_def no_bad_graphs_def]
+      by blast
+    thus ?thesis ..
+  qed
+qed
+
+end